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Interactions between fluids and elastic solids are ubiquitous in applications ranging from aeronautical
and civil engineering to physiological flows. Here we study the pulsatile flow through a two-dimensional
Starling resistor as a simple model for unsteady flow in elastic vessels. We numerically solve the equations
governing the flow and the large-displacement elasticity and show that the system responds as a forced
harmonic oscillator with nonconventional damping. We derive an analytical prediction for the amplitude of
the oscillatory wall deformation, and thus the conditions under which resonances occur or vanish.
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Flow-induced pressure fluctuations acting on elastic
structures can excite large-amplitude oscillations—the
most famous example being the catastrophic failure of
the Tacoma Narrows bridge [1]. In physiology, fluid-
structure interaction is associated with cardiovascular dis-
ease [2], but it also helps regulate the blood supply to
internal organs [3] and return blood to the heart during
diastole [4]. Physiological flows are extremely complex
and feature a large variability across individuals, which
prevents accurate predictions even with state-of-the-art
computational methods [5]. Therefore there has been a
desire to study the key physical mechanisms in simpler
setups [6]. The Starling resistor [7,8] is a canonical system
that has been widely used to investigate the nonlinearly
coupled dynamics of fluid flow and the deformation of
elastic vessels. The setup consists of an elastic tube
mounted between two rigid pipes in a pressurized chamber
(or its two-dimensional analog, the collapsible channel
shown in Fig. 1).
In Starling resistors the flow is typically driven by a

constant pressure drop between inlet and outlet. For this case,
rich nonlinear phenomena, such as flow limitation [9] and
self-excited oscillations [8,10–12], have been observed. By
contrast, studies of pulsatile flows through elastic tubes and
channels [8,13–17] are comparatively scarce despite the
pulsatile nature of blood flows. A notable exception is the
recent study by Amabili et al. [18] in which part of an excised
human aorta was mounted between two rigid pipes and
subjected to physiological pulsatile pressure and flow rates.
In this Letter we show that pulsatile flow in a two-

dimensional collapsible channel exhibits strong resonan-
ces, reminiscent of a forced damped harmonic oscillator.
Guided by this observation, we develop a simple math-
ematical model which successfully predicts the resonances,
the phase lag between the amplitude and the imposed

pressure, and also the conditions under which resonances
vanish.
We consider a fluid of kinematic viscosity ν and density

ρ, whose motion is governed by the incompressible Navier-
Stokes equations:

∂u
∂t þ u ·∇u ¼ −∇pþ∇2u; ∇ · u ¼ 0: ð1Þ

Here and elsewhere all lengths are scaled on the channel
height D and time t on the timescale for viscous diffusion
D2=ν. The fluid velocity u is nondimensionalized on ν=D
and the pressure p on ρν2=D2. We set the pressure at the
downstream end of the channel to zero and drive the flow
by setting the dimensionless pressure at the upstream end to

p ¼ pinðtÞ ¼ 12Rel½1þ A sinðα2tÞ�; ð2Þ

where l ¼ L=D. The dimensionless forcing frequency
α2 ¼ ΩD2=ν (Ω is the dimensional frequency and α the
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FIG. 1. Sketch of fluid flow in a collapsible channel. A pulsatile
pressure Pin of mean P0 and frequency Ω drives fluid of
kinematic viscosity ν and density ρ through a channel of total
length L and width D. The lower channel wall is rigid, whereas a
prestressed, elastic membrane of length Lm is clamped between
two rigid segments at the upper wall and is pressurized by an
external pressure Pext. The upstream and downstream segments
have lengths Lu and Ld, respectively.
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Womersley number) characterizes the ratio of the timescale
for viscous diffusion to the period of the imposed pressure
pulsation; A is the amplitude of the oscillatory component
of the pressure relative to the steady component. The
Reynolds number Re ¼ DU=ν is defined with the mean
speed of the Poiseuille flow generated by a steady pressure
drop P0 in the undeformed channel, U ¼ P0D2=ð12ρνLÞ.
The boundary conditions for the velocity are no slip on the
walls, and parallel flow is assumed at the inflow and
outflow boundaries.
We model the elastic segment of the wall as a thin,

massless membrane (of dimensional thickness h and
Young’s modulus E, subject to a dimensional prestress
Σ0) which deforms in response to the combined effects of
the external pressure and the fluid stresses. The resulting
traction vector acting on the membrane, nondimensional-
ized on the prestress Σ0, is given by

f ¼ −pextnþ 1

T

�
pn − ½∇uþ ð∇uÞT� · n

�
; ð3Þ

where n is the outer normal to the membrane,
pext ¼ Pext=Σ0, and the superscript T denotes the transpose
of a matrix. The parameter T ¼ Σ0D2=ðρν2Þ represents the
ratio of the prestress to the fluid pressure and is a measure
of the tension in the bounding membrane. We parametrize
the shape of the membrane by a dimensionless Lagrangian
coordinate ξ so that the position vector to a material point in
the membrane is given by Rðξ; tÞ ¼ rðξÞ þ dðξ; tÞ. Here
rðξÞ ¼ ½ξ; 1�T defines the undeformed configuration and
dðξ; tÞ is the displacement vector. The membrane defor-
mation is governed by the principle of virtual displace-
ments,Z

lm

0

�
ðσ0 þ γÞδγ þ 1

12
h2κδκ −

σ0Λ
h

f · δR
�
dξ ¼ 0; ð4Þ

where h ¼ h=D is the dimensionless thickness of the
membrane, σ0 ¼ Σ0=E the dimensionless prestress, γ ¼
∂dx=∂ξþ 1

2
½ð∂dx=∂ξÞ2 þ ð∂dy=∂ξÞ2� is a measure of the

extensional strain, and κ ¼ ½ð∂2dy=∂ξ2Þð1þ ∂dx=∂ξÞ −
ð∂2dy=∂ξ2Þð∂dy=∂ξÞ�=Λ provides a measure of the
bending deformation, with Λ ¼ ½ð1 þ ∂dx=∂ξÞ2þ
ð∂dy=∂ξÞ2�1=2. Both measures are fully geometrically non-
linear. The only linearization occurs in the assumption of
incrementally linear Hookean behavior in the constitutive
equation, which is based on the assumption that the
prestress is much larger than the stresses induced by the
actual deformation, σ0 ≫ 1.
We solved the time-dependent fully coupled fluid-

structure interaction problem with the open-source library
oomph-lib [19]. All simulations shown here were performed
with A ¼ 1, h ¼ 0.01, lm ¼ Lm=D ¼ 10, lu ¼ Lu=D ¼ 5,
and ld ¼ Ld=D ¼ 10.
We started the simulations from an initial condition in

which the membrane is undeformed and the velocity field is

steady Poiseuille flow. Following the decay of initial
transients the system settles into a time-periodic motion
with the period of the forcing 2π=α2. The snapshots in
Figs. 2(a)–2(d) show that the inward wall motion displaces
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FIG. 2. (a)–(d) Pressure contours and streamlines at four
equally spaced instants throughout the period of the oscillation
for α2 ¼ 148, Re ¼ 100, σ0 ¼ 103, T ¼ 109, and pext ¼ 10−4

after the decay of the initial transients. (e) Time trace of the
vertical displacement of the membrane midpoint yðtÞ at the same
parameters as (a)–(d) except for three different external pressures
(pext ¼ 10−5, 5 × 10−5, and 10−4). (f) The same data of (e) after
subtracting the time-averaged displacements ȳ following the
decay of the initial transients (ȳ ¼ 1.017, 0.965, 0.900, respec-
tively). (g) The oscillation amplitude and (h) the corresponding
phase lag between response and forcing as a function of α2, where
the red dots mark the case for (a)–(d) and the horizontal dotted
line marks ϕ ¼ π=2. All other parameters are as in (a)–(d).
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a significant amount of fluid from the central region of the
channel and thus creates strong sloshing flows which are
superimposed on the pressure-driven pulsatile flow. These
are reminiscent of the flows observed in a study of self-
excited oscillations in collapsible channels [10].
We characterize the dynamics of the system by monitor-

ing the vertical displacement of the membrane at its
midpoint yðtÞ. Figure 2(e) shows time traces of this
quantity for a range of external pressures. In Fig. 2(f)
we plot the same data but subtract the time-average
displacement ȳ following the decay of the initial transients
(whose duration is of the order of the viscous time unit
D2=ν). We observe that the amplitude of the steady-state
oscillations ŷ is approximately independent of the external
pressure (and from now on we set pext ¼ 10−4). Figure 2(g)
shows that the amplitude of the oscillations ŷ exhibits a
sharp maximum at a specific forcing frequency α2max.
Furthermore, the phase lag ϕ between the displacement
yðtÞ and the forcing pressure pinðtÞ displays a 90° phase
shift when the amplitude reaches its maximum; see
Fig. 2(h).
To elucidate the mechanism responsible for this behavior,

we will now develop a simple theoretical model that
describes the response of the collapsible channel to the
imposed pressure pulsations at its upstream end. Since we
found the external pressure to have little effect on the

system’s behavior, we set it to zero and thus consider the
setup sketched in Fig. 3(a). We assume the upstream and
downstream rigid parts of the channel to be sufficiently long,
lu; ld ≫ 1, so that in these segments the horizontal compo-
nent of the velocity u is much larger than its vertical
counterpart. Our computations show that this assumption
is appropriate even in the relatively short channels used in
our simulations; see Figs. 2(a)–2(d). The horizontal com-
ponent of the momentum equation (1) can then be approxi-
mated by

∂u
∂t ¼ −

∂p
∂x þ ∂2u

∂y2 ; ð5Þ

where the pressure gradient only depends on time,
∂p=∂x ¼ GðtÞ, and we have u ¼ uðy; tÞ. We assume that
the vertical displacement of the elastic membrane can be
described by the product of a mode shape MðxÞ and an
amplitude YðtÞ, so that

ymðx; tÞ ¼ 1þ YðtÞMðxÞ: ð6Þ

Based on the shapes observed in the computations,
we approximate MðxÞ by a quadratic function,
MðxÞ ¼ 4ðx=lmÞ½1 − ðx=lmÞ�. Given that the elastic mem-
brane is under a large, approximately constant tension, we
describe its deformation by Laplace’s law, implying that the
fluid pressure in the elastic segment is given by the product
of the membrane curvature and its tension. For the assumed
mode shape the dimensionless fluid pressure under the
membrane is pm ¼ kYðtÞ, where k ¼ 8hT=l2m. By exploit-
ing that the flows in the two rigid segments are fully
developed and coupled by mass conservation, we show in
the Supplemental Material [20] that the displacement of the
membrane Y obeys the following equation:

2

3
lm

d2Y
dt2

þ k
lu þ ld
luld

Y þ
�∂ud
∂y −

∂uu
∂y

�����
1

y¼0

¼ pinðtÞ
lu

: ð7Þ

This equation can be interpreted in terms of the difference in
the pressure gradients in the upstream and downstream
segments driving an acceleration in the net flow away from
the center, which must be balanced by the change in volume
of the elastic section; see Eq. (S13) in the Supplemental
Material [20].
The last term on the left-hand side of Eq. (7) arises from

the viscous terms in the momentum equation and represents
the effect of the viscous shear stresses acting on the walls of
the rigid segments. The remaining terms show that in the
absence of viscous damping the system is a forced linear
oscillator with natural frequency:

α2eig ¼
�
3

2

k
lm

lu þ ld
luld

�
1=2

¼
�
12hTðlu þ ldÞ

l3mluld

�
1=2

: ð8Þ

2

am
pl

itu
de

100 150 200 250
10-2

10-1

100(c)

(a)

(b)

FIG. 3. (a),(b) Sketch of the model. (c) Oscillation amplitude
against α2 from the model at Re ¼ 100, σ0 ¼ 103, T ¼ 109,
where the solid and the dashed lines denote the viscous and the
inviscid prediction, and black and blue correspond to β ¼ 0.25
and β ¼ 0. The black symbols show the results from the
simulations [as in Fig. 2(g), with some symbols omitted
for clarity]. The dotted lines mark the corresponding eigen-
frequencies (eig).
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The damping term in Eq. (7) is more complicated than in a
standard harmonic oscillator (see the Supplemental
Material [20]).
Our model equation (7) therefore predicts that the

collapsible channel behaves like the linear oscillator
sketched in Fig. 3(b): The elastic membrane of length lm
is equivalent to a piston of width 2=3lm, mounted on a
spring of stiffness k. The piston is displaced by the net
influx of fluid from the rigid segments and sets the fluid
pressure acting at their internal boundaries. The system’s
oscillations are governed by a dynamic balance between
fluid inertia and the elastic restoring forces, with the fluid
viscosity providing damping.
The amplitude jŶj of the time-harmonic solutions,

YðtÞ ¼ Ŷ expðiα2tÞ, to Eq. (7) is given in the Supple-
mental Material, Eq. (S11) [20]. The blue solid line in
Fig. 3(c) shows a plot of the theoretically predicted
amplitude as a function of the forcing frequency α2 for
the same parameters as in Fig. 2(g). The thin blue dashed
line shows the corresponding inviscid response, with the
natural frequency α2eig shown by the blue vertical dotted
line. Viscous effects eliminate the unbounded response of
the inviscid system at α2 ¼ α2eig and reduce the resonant
frequency. The theoretical predictions are in good qualita-
tive agreement with the computational results, but they
overestimate the resonant frequency. This is a consequence
of us having neglected the dynamics of the fluid that moves
within the elastic segment itself. We can include this effect
by replacing lu=d by corresponding effective lengths

l½eff�u=d ¼ lu=d þ βlm, where the parameter β represents the
fraction of the fluid in the elastic segment that participates
in the oscillatory (sloshing) motion. The black lines in
Fig. 3(c) show the theoretical predictions for β ¼ 1=4. This
value produces near-perfect agreement with the results of
the simulations for all the cases considered (see Table S1 in
the Supplemental Material for a full list of all computations
[20]) and is kept fixed hereinafter.
We note that the theoretical model predicts the system’s

response to be controlled by the parameter T and the
geometry; the Reynolds number Re is predicted to affect
only the amplitude of the response, but not the resonant
frequency. Figure 4 shows the amplitude (top row) and
phase (bottom row) as a function of the forcing frequency
α2 for a constant value of T (left) and a constant value of Re
(right). The agreement between the theoretical predictions
and computational results is remarkable, even for oscil-
lations of large amplitude (Fig. 4 includes cases where the
amplitude reaches values as large as 48% of the channel
width). The amplitude increases proportionally to the
Reynolds number. A reduction in the membrane tension
(T) increases the amplitude of the oscillation and reduces
the resonant frequency. This suggests that for sufficiently
small values of T the maximum amplitude may occur in the
quasisteady limit (α2 → 0). However, for the parameter

values of Fig. 4 this happens when the theoretically
predicted amplitude exceeds the undeformed channel
width, i.e., jŶj > 1, rendering the theoretical model inap-
plicable. To explore the disappearance of the resonance at
smaller values of T, we therefore reduced the Reynolds
number significantly.
Figure 5(a) shows a plot of the amplitude as a function of

the forcing frequency α2 for three values of T and for a
Reynolds number of Re ¼ 0.25. For T ¼ 108 there is a
clearly defined resonance at α2max ≈ 45; a reduction of T to
107 increases the maximum amplitude but weakens the
resonance and moves it to smaller values of the forcing
frequency, α2max ≈ 12.5; finally, for T ¼ 106 the maximum
amplitude is obtained in the quasisteady limit, implying the
disappearance of the resonance.
Figure 5(b) shows how the natural frequency α2eig and the

frequency α2max, at which the system has its maximum
response, depend on the system parameters. For large
values of T the maximum response occurs close to the
natural frequency, α2max ≲ α2eig, and both scale with the
square root of T as suggested by Eq. (8). Just below T ≈
2 × 106 the resonance disappears. Finally, we probed the
dependence of the system’s response on the geometry by
performing simulations for various combinations of lm, lu,
ld, and h. As shown in Fig. S1 in the Supplemental
Material, the scaling suggested by the inviscid approxima-
tion (8) leads to a near-perfect collapse of all the results
onto a single master curve (β ¼ 0.25 was kept fixed) [20].
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FIG. 4. (a) Oscillation amplitude against α2 for σ0 ¼ 103 and
T ¼ 109 for four Reynolds numbers, and the corresponding
phase lag (c). (b) Oscillation amplitude against α2 for
Re ¼ 100, σ0 ¼ 103 and three values of T, and the corresponding
phase lag (d). The symbols and the lines denote the simulation
and the model predictions, respectively.
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In summary, the response of a collapsible channel is
described by a harmonic oscillator with nonstandard
damping, even in regimes where the imposed pulsations
in fluid pressure induce very large wall deflections. Our
model accurately predicts the response of the system as a
function of the ten independent parameters that govern it
(lm, lu, ld, h, pext, Re, A, α2, T, and σ0). The tension and
the dimensions of the channel segments solely determine
the system’s natural frequency, whereas the amplitude of
the response also depends on the frequency and amplitude
of the pressure pulsations (the latter is set by ARe; see
Fig. S2 in the Supplemental Material [20]). While our
simulations were performed for a 2D system, the mecha-
nism can be generalized to a 3D setting. The characteri-
zation of oscillations during which the elastic tube
undergoes an axisymmetric inflation is straightforward,
whereas the characterization of nonaxisymmetric oscil-
lations could benefit from a “tube-law”-based descrip-
tion [23].
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FIG. 5. (a) Oscillation amplitude against frequency α2 at
Re ¼ 0.25, σ0 ¼ 103. The maximum oscillation amplitude for
T ¼ 108 and 107 occurs at α2 ≈ 45 and 12.5, respectively, and at
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the black dashed line denote the model predictions of α2eig and
α2max, respectively. The parameters used in the simulations are
listed in Table S1 in the Supplemental Material [20].
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