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The Hermitian part of the field-mediated dipole-dipole interaction in infinite periodic arrays of two-level
atoms yields an energy band of the singly excited states. In this Letter, we show that a dispersion relation,
ωk − ωkex ∝ ðk − kexÞs, near the band edge of the infinite system leads to the existence of subradiant states

of finite one-dimensional arrays of N atoms with decay rates scaling as N−ðsþ1Þ. This explains the recently
discovered N−3 scaling and it leads to the prediction of power law scaling with higher power for special
values of the lattice period. For the quantum optical implementation of the Su-Schrieffer-Heeger
topological model in a dimerized emitter array, the band gap closing inherent to topological transitions
changes the value of s in the dispersion relation and alters the decay rates of the subradiant states by many
orders of magnitude.
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Subradiance is the phenomenon that radiative emission
by an atomic ensemble is collectively prohibited [1] in
contrast to the factor N2 enhancement of the radiation rate
by N emitters in Dicke superradiance [2]. The application
of the subradiant suppression of radiative decay in quantum
memories [3,4], excitation transfer [5–7], and topological
photonics [8,9] has spurred strong interests and a number of
results have been obtained that are not yet well understood
in a single comprehensive theory. Recently, one-dimen-
sional (1D) emitter arrays with subwavelength separations,
see Fig. 1(a), were found to have subradiant states with
decay rates scaling as N−3 [10–17], but examples of rates
scaling with N−α with α > 3 were also soon identified [18].
The close relationship between subradiance and the band

flatness of collectively shared atomic excitations has been
realized to be a crucial component of the collective dipole-
dipole interaction [19], see also Refs. [20–31]. In this Letter
we show that a better understanding of precisely this
relationship can explain and predict several characteristics
of subradiance.
Dipole-dipole interaction.—In regimes where the Born-

Markov approximation works well, one can trace out the
quantized light fields and obtain the field-mediated dipole-
dipole couplings between the emitters described by an
effective Hamiltonian [32]:

Heff ¼ −μ0ω2
0

XN
m;n¼1

d�
m ·Gðxm − xn;ω0Þ · dnσ

†
mσn; ð1Þ

where ω0 is the transition frequency between the emitter
ground state jgi and the excited state jei, σm ¼ jgmihemj,
dm and xm are the transition dipole moment and spatial

coordinate of the mth atom, μ0 is the vacuum permeability
and G is the dyadic Green’s tensor. Our main example is
atom arrays along a single dimension in 3D free space,
where atoms are equally separated by d and transition
dipoles are polarized transversally to the lattice direction as
depicted in Fig. 1(a).
Restricting our analysis to the case of a single excitation,

shared among the atoms, Heff is formally equivalent to a
non-Hermitian tunneling Hamiltonian among the discrete
sitesm, representing the localized excitation, jmi ¼ σ†mjGi,

(a)

(b)

(c)

FIG. 1. (a) Illustration of a regular array of emitters with dipole
moments aligned perpendicular to the spatial array. (b) Energy
shifts ωk (lower blue curve) and decay rates γk (upper red curve)
for the emitter array with k0d=π ¼ 0.4, where k0c is the atomic
resonance frequency. Wave numbers outside the shaded interval
Γ ¼ ½−k0; k0� correspond to frequencies exceeding the atomic
resonance frequency. (c) Decay rates of the most subradiant states
of finite arrays with N emitters in units of the single emitter
spontaneous emission rate γ0, for k0d=π ¼ 0.3 (gray curve), 0.55
(red curve), and 0.4828 (lower blue curve). The dashed lines
show N−3 and N−5 dependencies.
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where jGi¼jg1g2 ���gNi. For an infinite array with−∞ < n;
m < ∞, the dipole-dipole interactionHamiltonian,H∞

eff , has
singly excited eigenstates in the form of Bloch states,
jki ¼ P∞

m¼−∞ eikxm jmi, with k ∈ ½−π=d; π=d� and complex
eigenvaluesωk − iγk=2. In Fig. 1(b), the energy shiftωk and
the decay rate γk are shown for these stateswith k0 ¼ 0.4π=d
(k0 ¼ ω0=c, c is the speed of light). Notably, γk vanishes
outside Γ ¼ ½−k0; k0�, because the corresponding optical
frequencies are not resonant with the atoms [12].
In the following, we shall make use of the fact that

Heff ¼ PNH∞
effPN , where PN projects on the space with no

excitations outside the sites 1; 2 � � �N. This implies that the
singly excited eigenstates of Heff can be expanded on the
Bloch states, restricted to theN lattice sites and normalized.
We shall refer to these states by the complex argument
z ¼ eikd,

jz ¼ eikdi ¼ 1ffiffiffiffi
N

p
XN
m¼1

eikxm jmi; ð2Þ

and thus write

Heff ¼ N
Z

π=d

−π=d

dk
2π=d

�
ωk −

i
2
γk

�
jeikdiheikdj: ð3Þ

Note that the states jeikdi are not orthogonal, and hence not
the eigenstates of Heff . Therefore, in finite arrays states
with k ∉ Γ are candidate subradiant states with tiny but
finite decay rates.
Generalized Bloch theorem.—To identify the singly

excited eigenstates of the finite atomic arrays, the gener-
alized Bloch theorem [33–35] is essential. The theorem is
established for Hamiltonians in the general form of

HR ¼ h0I þ
XR
r¼1

XN−r

m¼1

hrjmihmþ rj þ h�r jmþ rihmj; ð4Þ

where hr are coupling (tunneling) strengths across sites
separated by up to a maximum range of R.HR is periodic in
m except for the leftmost sites ∂l ¼ f1; 2;…Rg and the,
similarly defined, rightmost sites ∂r. We denote the projec-
tion onto the “boundary” ∂ ¼ ∂l ∪ ∂r by P∂, while the
projector on the “bulk” sites is denoted by PB with
P∂ þ PB ¼ PN .
To find eigenstates fulfilling HRjψi ¼ Ejψi, we apply

the generalized Bloch theorem noting that the solution
space of the bulk equation PBðHR − EÞjψi ¼ 0 is spanned
by the states jz ¼ eikdi, where z are the roots of the
equation ω̃RðzÞ ¼ E with

ω̃RðzÞ ¼ h0 þ
XR
r¼1

ðhrzr þ h�rz−rÞ: ð5Þ

As the array is finite, states jzi with complex k (or,
equivalently, jzj ≠ 1) are also physically permitted.

This implies that all the complex roots zj of the 2R-degree
polynomial equation (5), should be identified. The
eigenstate of HR can then be written as the superposition
jψi ¼ P

2R
j¼1 cjjzji that fulfills the boundary conditions,

i.e., P∂ðHR − EÞjψi ¼ 0.
We note that Eq. (5) yields the dispersion relation ofHR,

ωRðkÞ ¼ ω̃RðeikdÞ, and now suppose that ωRðkÞ has an
extremum point kex of degree s, i.e., ωRðkÞ ≈ ωRðkexÞ þ
asðk − kexÞs for k ≈ kex, with s an even integer and as the
Taylor expansion coefficient. Then ω̃RðzÞ can be expanded
around zex ¼ eikexd as

ω̃RðzÞ ¼ ω̃RðzexÞ þ as
1

ðidzexÞs
ðz − zexÞs þ � � � : ð6Þ

We now focus on eigenstates of the finite system with
eigenvalues E ≈ ωRðkexÞ. Since the system has N singly
excited eigenstates, it is reasonable to assume that
two neighboring states have wave numbers separated
by OðN−1Þπ=d, and hence a series of eigenvalues may
exist with E ¼ ωRðkexÞ þ ðas=dsÞδs, where δ ∼ N−1.
Equation (6) thus yields s roots of ω̃RðzÞ ¼ E close to zex:

zj ≈ zexð1þ iδei2πðj=sÞÞ; j ¼ 1; 2 � � � s; ð7Þ

while the remaining 2R − s roots are not in the vicinity
of zex.
A simpler Hamiltonian.—For a given HR, these exists a

Hamiltonian, Hs=2, which has its extremum energy at the
same kex asHR and a dispersion relation of the same degree
s, ω̃s=2ðzÞ ¼ ω̃s=2ðzexÞ þ asð−d2zexzÞ−s=2ðz − zexÞs. Hs=2

is chosen such that the roots of ω̃s=2ðzÞ ¼ E are given
exactly by Eq. (7). We shall show that the eigenstates of
Hs=2 approximate the singly excited subradiant eigenstates
of Heff well and permit evaluation of their decay rates by
perturbation theory.
By introducing ϵj and ηj so that zj=zex ¼ ð1þ ϵjÞ−1 ¼

1þ ηj, we find that the boundary condition implies [36]

Xs

j¼1

cjϵrj ¼ 0;
Xs

j¼1

cjz
Nþ1
j ηrj ¼ 0; ð8Þ

for all powers r ¼ 0; 1; 2;…; s=2 − 1. Equation (8) and the
smallness of ϵj; ηj ∼ N−1 are sufficient to provide effective
solutions of the problem without explicitly determining
fcjg and fϵj; ηjg.
Perturbative calculation of the subradiant decay

rates.—WhileHeff represented byGðxm−xn;ω0Þ in Eq. (1)
does not have a bounded tunneling range, we shall
demonstrate that for values of k near kex∉Γ, Heff −Hs=2

can be treated as a perturbation toHs=2. The non-Hermitian
Heff can be separated into a coherent part and a dissipative
part,Heff ¼ HRe

eff − iHIm
eff , cf., Eq. (3). The decay rates of the
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subradiant eigenstates of Heff can therefore be approxi-
mated by γ ¼ 2hψ jHIm

eff jψi, evaluated in the eigenstates
of Hs=2.
Following Eq. (3), we must evaluate heikdjψi for

k ∈ Γ ¼ ½−k0; k0�:

heikdjψi ¼ 1

N

Xs
j¼1

cj
zje−ikd − ðzje−ikdÞNþ1

1 − zje−ikd
: ð9Þ

Separating the terms in the enumerator and expanding zj in
terms of ϵj and ηj, we obtain two contributions:

Xs
j¼1

cj
zje−ikd

1− zje−ikd
¼
Xs

j¼1

cj
1

z−1j eikd−1

¼ 1

z−1ex eikd−1

X∞
n¼0

P
s
j¼1 cjϵ

n
j

ðzexe−ikd−1Þn ; ð10aÞ

Xs

j¼1

cj
ðzje−ikdÞNþ1

1− zje−ikd
¼ e−iðNþ1Þkd

1− zexe−ikd
X∞
n¼0

P
s
j¼1 cjz

Nþ1
j ηnj

ðeikd− zexÞn
;

ð10bÞ

where terms with n ¼ 0; 1;…; s=2 − 1 vanish due
to Eq. (8).
Keeping only the nonvanishing term of the lowest order,

n ¼ s=2, we obtain

hψ jHIm
eff jψi ≤

1

N

�
j
X
j

cjϵ
s=2
j j2 þ j

X
j

cjz
Nþ1
j ηs=2j j2

�

×
Z

k0

−k0

dk
2π=d

γk
jzex − eikdjsþ2

: ð11Þ

As kex ∉ Γ, the denominator in the integral does not
approach 0, and the integral contributes an N-independent
finite factor. Using ϵj ∼ ηj ∼ N−1, we thus get the scaling of
the decay rate with N,

γ ¼ 2hψ jHIm
eff jψi ∼ N−s−1: ð12Þ

This yields the advertised N−α power law with α ¼ sþ 1.
Note that hψ jHIm

eff jψi is a factor N−1 smaller than the
differences between the real eigenvalues of Hs=2 in the
vicinity of ωRðkexÞ. Thus the perturbation treatment is
consistent in the limit of large N.
To complete the demonstration, we must also ensure that

ΔH ¼ HRe
eff −Hs=2 can be consistently treated as a pertur-

bation. To this end, we represent ΔH in the form of Eq. (3),
with the dispersion relation δωk ¼ ωk − ωs=2ðkÞ and
exploit the fact that δωk ∼ N−s−1 for k ≈ kex. See more
details in the Supplemental Material [36].
As a further check of the consistency of our perturbative

treatment, we verify that the numerical right eigenstates of

Heff , differ by only a small amount from the eigenstates of
the simpler Hamiltonian

jψ 0i ∝ jψi þOðN−1Þjψ⊥i ð13Þ

yielding an infidelity of, 1 − jhψ jψ 0ij2 ∼ N−2.
The N−2 scaling of the infidelity is, indeed, confirmed

for the subradiant states of our system with decay rates
scaling as N−3 for k0d=π ¼ 0.3 and 0.55 (gray and red
curves in Fig. 2), and for the subradiant state with a decay
rate scaling as N−5 and k0d=π ¼ kð4Þ ≈ 0.4828 (blue
curve). We observe that the gray infidelity curve for k0 ¼
0.3π=d follows the overall N−2 behavior with dramatic
oscillations, which are due to an interference effect [19]
between Bloch waves that are degenerate with the
extremum of ωk. This interference is also the cause of
the oscillatory structures in the value of the decay rate as
function of N in Fig. 1(d). The upper panel of Fig. 2 shows
the 2nd and 4th order coefficients (a2;4) of the Taylor series
of ωk at kex ¼ π=d, and we see that a2 > 0 and a4 < 0
when k0 < kð4Þ and hence band degeneracy is expected, as
illustrated in the inset of Fig. 2. For k0 ≥ kð4Þ, the extremum
is nondegenerate and no oscillations are observed. A
similar behavior is displayed in Ref. [36] for analytically
solvable toy model Hamiltonians.
Qualitative discussion of subradiant decay rates.—A

supplementary, qualitative explanation of why a higher
order dispersion relation leads to a higher order N−α decay
rate may be inferred from Fig. 3(b) in Ref. [12], which

FIG. 2. Upper panel: coefficients of the 2nd and 4th order terms
of the Taylor series (a2;4) of the dispersion relation around
k ¼ π=d, as a function of k0d=π. Lower panel: infidelities (log
scale) between the most subradiant right eigenstates of Heff for
k0d=π ¼ 0.3, 0.55 and k0 ¼ kð4Þ, and the eigenstates of H1 and
H2, respectively. The dashed lines indicate the N−2 power law
behavior. Inset: the dependence of ωk on k near kex ¼ π=d,
for k0 ¼ 0.4826π=d < kð4Þ.
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shows that the radiation from the subradiant states is mostly
emitted from the ends of the emitter array. A flat band
structure with a larger value of s implies a slower group
velocity which extends the excitation lifetime in the system
by impeding the propagation of excitation towards the
chain ends.
By the same argument, we expect that subradiant states

well inside the energy bands, i.e., in regions of linear
dispersion, are characterized by finite group velocities and
hence the emission from the ends of the array occur with a
rate scaling as N−1. In conjunction with their numerical
discovery of subradiant states with ∼N−3 decay rates,
Asenjo-Garcia et al. [12] identified a series of states labeled
by an integer ξ and decaying at rates ∼ξ2=N3. For
ξ ∼OðNÞ, corresponding to wave numbers well inside
the energy bands (k − kex ≃ ξπ=Nd [14]), this, indeed,
yields decay rates scaling as N−1.
Our results imply that varying the power s of the energy

band may form practical ways to control the emission of
light by emitter arrays. In the remaining part of this Letter,
we shall demonstrate such control in emitter arrays that
undergo a Su-Schrieffer-Heeger (SSH) type topological
transition.
Dimerized arrays implementing the SSH Hamiltonian.—

We proceed with the study of a dimerized atomic array
interacting with the quantized electromagnetic field in 3D
free space and in a 1D waveguide. Both systems have
topological properties characterized by the SSH model
[37]. For a recent review on topological Bloch bands, see

Ref. [38]. Topological transitions are usually accompanied
by the closing and opening of gaps in the energy bands. The
above analysis suggests that this may radically impact the
radiative decay rates of the subradiant states.
Figure 3(a) shows the dimerized version of the emitter

array, which has the lattice constant d and two atoms
(denoted by “a, b”) separated by the distance d1 within each
unit cell. We denote d2 ¼ d − d1. Two nonequivalent
configurations, d1 < d2 and d1 > d2, are found to be
topologically trivial and nontrivial (manifested by boundary
states [39,40]) and the band topology can be characterized
mathematically by the Zak phase [41]. The topological
phase transition occurs at d1 ¼ d2, where we recover
the regular array in Fig. 1(a) with the lattice constant d1.
The subradiant states with, e.g., k ¼ �0.5π=d1 (and
k0 ¼ 0.4π=d1) are well within the regions with linear
dispersion, and they have decay rates scaling as N−1. The
lowest band of the Brillouin zone of the regular lattice
½−π=d1; π=d1� corresponds to two bands of the Brillouin
zone of the dimerized lattice ½−π=d; π=d�, where the sub-
radiant states are labeled by k ¼ π=d (and where
k0 ¼ 0.8π=d). To describe the two Bloch bands, Eq. (2)
should be augmented with intracell states

jeikd;u�i ¼ 1ffiffiffiffi
N

p
XN
m¼1

eikxmu� · σ†mjGi; ð14Þ

where σ†m ¼ ðσ†m;a; σ
†
m;bÞ, the unit vector u� ¼ ðu�a ; u�b Þ

describes the relative excitation amplitudes inside each unit
cell, and “þð−Þ” labels the upper(lower) band.As illustrated
in the middle panel of Fig. 3(b), the two bands of real
eigenenergies cross at k ¼ π=d with linear dispersion
relations.
However, whenever d1 ≠ d2, a band gap opens at

k ¼ π=d. This is illustrated in the top and bottom panels
of Fig. 3(b) for d1=d ¼ 0.47 and 0.53, respectively. When
the gap forms, both the upper and lower bands show a
quadratic dispersion (s ¼ 2) around k ¼ π=d, and we
expect the radiative behavior to change significantly.
This, indeed, occurs as evidenced in Fig. 3(c) where we
plot the dependence of the decay rate on N for the
subradiant states with wave number close to kex ¼ π=d
for both bands and for the three values of d1=d. Our
numerical calculations clearly show how the N−1 depend-
ence of the decay rate for d1 ¼ d=2 changes to N−3 in case
of d1=d ¼ 0.47 and 0.53. An enlargement of the transition
is shown in the inset of Fig. 3(c) for the array emitting into
the 3D quantized field with k0 ¼ 0.8π=d and N ¼ 500.
Notably, the decay rates decrease by 3 orders of magnitude
away from the topological transition. Such critical phe-
nomenon may thus be used to witness aspects of the
topological transition.
Analytical results can be obtained for the dimerized

arrays coupled to an ideal 1D waveguide. The effective
Hamiltonian [42]

(a)

(b)

(c)

FIG. 3. (a) The dimerized array of atomic emitters.
(b) Dispersion relations for the dimerized array with k0 ¼
0.8π=d and d1=d ¼ 0.47, 0.5, 0.53, respectively. (c) Decay rates
of the subradiant states with wave numbers close to π=d as a
function of the number of units cells N. The dashed lines show
the reference N−1 andN−3 power law dependence for comparison
with the numerical results. The inset shows the decay rate as
function of d1=d for N ¼ 500. The dotted (solid) lines refer to the
upper (lower) band.

PHYSICAL REVIEW LETTERS 125, 253601 (2020)

253601-4



H1D ¼ −i
γ0
2

XN
m;n¼1

μ;ν∈fa;bg

eik0jxm;μ−xn;νjσ†m;μσn;ν ð15Þ

has an inverse, H−1
1D that is almost identical to the original

SSH model [19,36]. Hence H1D supports the SSH type
topology and the critical points are found to be d1 ¼ d2 and
d1 ¼ d2 � π=k0. In Ref. [36] we focus on the latter values
causing the band gap opening and closing to occur around
k ¼ 0. At the precise value, d1 ¼ d2 � π=k0, the subradiant
states with wave numbers close to k ¼ 0 have decay rates
given by [36]

γ ¼ γ0
4N

cotðk0d1Þ ln
�
1þ sin k0d1
1 − sin k0d1

�
: ð16Þ

The N−1 scaling of the subradiant decay rates transitions to
N−3 when d1 ≠ d2 � π=k0.
Conclusions.—We have presented a derivation of a

universal connection between the decay rates of the most
subradiant states of an array of N two level emitters and the
Bloch wave dispersion relation near the band edge. This
result was demonstrated and explained in detail and it
confirms the intrinsic connection between subradiant states
and flat energy bands, emphasized in Ref. [19]. We studied
the case of radiative emission into the 3D quantized
electromagnetic field and a 1D waveguide, but we note
that the subradiant phenomena may be further manipulated
by coupling to structured radiation reservoirs, such as
photonic flat bands [43]. Also, extension of our theory
to arrays in two and three dimensions may provide an
interesting research area.
Our study concerned only the linear regime of a single

excitation, while we have previously shown that pairs of
excitations may survive for even longer times than single
excitations in the system [44]. A promising avenue for
further research would thus be the exploration of subra-
diance with many excitations in systems with flat energy
bands. Such studies may pose analogies with phenomena in
strongly correlated many-body physics, such as, e.g., the
fractional Hall effect [45,46] and the Lieb lattice [47,48],
see also Refs. [38,49].
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