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We show that quantum dynamics of Bose-Einstein condensates in the weakly interacting regime can be
geometrized by a Poincaré disk. Each point on such a disk represents a thermofield double state, the overlap
between which equals the metric of this hyperbolic space. This approach leads to a unique geometric
interpretation of stable and unstable modes as closed and open trajectories on the Poincaré disk,
respectively. The resonant modes that follow geodesics naturally equate fundamental quantities including
the time, the length, and the temperature. Our work suggests a new geometric framework to coherently
control quantum systems and reverse their dynamics using SU(1,1) echoes. In the presence of perturbations
breaking the SU(1,1) symmetry, SU(1,1) echoes deliver a new means to measure these perturbations such
as the interactions between excited particles.
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Geometries may arise as emergent phenomena in certain
quantum systems. Prototypical examples include the
AdS=CFT correspondence [1,2], the ER ¼ EPR conjecture
[3–6], and scale invariant tensor networks [7–10]. In these
examples, a prerequisite for the emergent hyperbolic
geometries is the existence of strong correlations in
quantum many-body systems. A question thus arises as
to whether one could use weakly interacting systems, where
gauge theory/gravity duality is unavailable at the moment,
to reveal some intriguing geometries.
In this work, we show that quantum dynamics of weakly

interacting bosons have deep roots in the hyperbolic
geometry. Whereas such dynamics has been extensively
studied [11–16], our geometric approach has a number of
unique advantages compared to the previous works. On the
theoretical side, it leads to new understandings of prior
experimental results. It shows that a fundamental concept
of dynamical instability has an underlying geometric
interpretation, corresponding to open trajectories on a
Poincaré disk, a prototypical model for the hyperbolic
surface. In sharp contrast, stable modes are mapped to
closed trajectories, and the transition from stable to
unstable mode can be visualized by the change of topology
of the trajectories on the Poincaré disk.
In practice, our approach provides experimentalists with a

powerful tool to access and manipulate new quantum
dynamical phenomena. It delivers SU(1,1) echoes to reverse
any initial state of any excitation mode once interactions of
BECs change, as analogous to spin echoes overcoming the
dephasing in spin systems [17,18]. Moreover, it could be
used as a new framework to detect perturbations that breaks
the SU(1,1) symmetry, in the same spirit of using spin
echoes to extract a wide range of useful information when
spins are interacting with each other [19–23]. Finally, our

scheme based on the suð1; 1Þ algebra and its underlying
geometric representation applies to any systems with the
SU(1,1) symmetry, similar to spin echoes broadly applied to
systems whose constituents obey the suð2Þ algebra. Our
scheme thus can be used to reverse quantum dynamics in a
wide range of systems and explore information scrambling
via out-of-time ordering correlators (OTOC) [24–27].
To be specific, this geometric approach correlates the

time in quantum dynamics to the length in the hyperbolic
space, and to the temperature that captures thermalization
of a subsystem, as follows:

L̃ ¼ jξjt; ð1Þ

T̃ ¼ −
1

2
ln−1 tanhð2L̃Þ; ð2Þ

where L̃ is the dimensionless length in a hyperbolic
geometry and T̃ is the dimensionless temperature. jξj is
an energy scale characterizing the Hamiltonian and t is the
time. Each point on the Poincaré disk is assigned a unique
SU(1,1) coherent state, and the overlap between two nearby
SU(1,1) coherent states, which is denoted by Fz;zþdz, is
equated to the metric of a Poincaré disk,

ds2 ¼ 4ð1 − Fz;zþdzÞ ¼
4ðdx2 þ dy2Þ
ð1 − x2 − y2Þ2 ; ð3Þ

where ðx; yÞ denote Cartesian coordinates.
We consider a Hamiltonian

H ¼
X
k⃗

Ek⃗c
†
k⃗
ck⃗ þ

Ũ
2V

X
k⃗;k⃗0;q⃗

c†
k⃗þq⃗

c†
k⃗0−q⃗

c
k⃗0ck⃗; ð4Þ
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where Ũ ¼ 4πℏ2as=M, c†
k⃗
(ck⃗) is the creation (annihilation)

operator for bosons with the momentum k⃗. Starting from
t ¼ 0, asðtÞ is tuned dynamically from either zero or a
small value using the magnetic or optical Feshbach
resonance [28], as shown in Fig. 1. Our results based on
the suð1; 1Þ algebra apply to both quenching as or an
arbitrary asðtÞ [29].
Though a BEC with attractive interactions is not sta-

ble [11,15,16], coherent dynamics is achievable within a
timescale before significant losses of particles occur [40].
We first focus on short-time dynamics in which the particle
number at a finite momentum, Nk⃗≠0, is small such that
interactions among excitations are negligible. The quantum
dynamics is governed by a Hamiltonian, Heff ¼

P
k⃗ Hk⃗,

Hk⃗ðtÞ ¼ ξ0ðk⃗ÞK0 þ ξ1ðk⃗ÞK1 þ ξ2ðk⃗ÞK2; ð5Þ

where K0 ¼ 1
2
ðc†

k⃗
ck⃗ þ c−k⃗c

†
−k⃗
Þ, K1 ¼ 1

2
ðc†

k⃗
c†
−k⃗

þ ck⃗c−k⃗Þ
and K2¼ð1=2iÞðc†

k⃗
c†
−k⃗
−ck⃗c−k⃗Þ, ξ0ðk⃗Þ¼2ðEk⃗þŨjΨ0j2Þ,

ξ1ðk⃗Þ ¼ 2ReU, ξ2ðk⃗Þ ¼ −2ImU, U ¼ ŨΨ2
0, and Ψ0 ¼ffiffiffiffiffiffiffiffiffiffiffiffi

N0=V
p

eiθ is the condensate wave function. ξ⃗ ¼
fξ0; ξ1; ξ2g is an external field, analogous to the magnetic
field in the case of SU(2), and its strength,
ξ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ20 − ξ21 − ξ22
p

, characterizes the energy scale. For
instance, when ξ20 > ξ21 þ ξ22, the energy spectrum is given
by ðmþ 1=2Þξ, wherem is an integer. The above equations
show that the dynamics at different k⃗ are decoupled. This
model can be realized using a wide range of appara-
tuses [29].
The Hamiltonian in Eq. (5) with arbitrary choices of

parameters, ξ1;2;3, can be generated by three operators, K0,
K1, and K2, which satisfy

½K1; K2� ¼ −iK0; ½K0; K1� ¼ iK2;

½K2; K0� ¼ iK1: ð6Þ

Any propagator,

PðtÞ ¼ Te−i
R

t

0
dt0Hk⃗ðt0Þ; ð7Þ

is an element in SU(1,1) [41], where T is the time-ordering
operator. Such SU(1,1) symmetry was recently revisited
and a special type of echo applicable to an initial state
of the vacuum in periodically driven bosons was
discussed [42,43]. Since the global U(1) phase does not
affect physical observables, we consider the quotient,
SUð1; 1Þ=Uð1Þ, whose element is created by two oper-
ations,

Rðφ0Þ ¼ e−iφ0K0 ; Bðφ1; 0Þ ¼ e−iφ1K1 ; ð8Þ

which correspond to a rotation and a boost, respectively.
A generic boost along an arbitrary direction is given
by Bðφ1;φ2Þ ¼ e−iðφ1K1þφ2K2Þ.
Equation (8) provides us with a parametrization of the

propagators using a Poincaré disk [41,44], as shown in
Fig. 1(b). A similar approach was revisited very recently to
consider geometric phases in the adiabatic limit [45].
Whereas both the SU(1,1) symmetry of the Hamiltonian
and the geometric representation of SUð1; 1Þ=Uð1Þ are
known in the literature [41,44], many fundamental ques-
tions remain unexplored. For instance, whether the metric
of the Poincaré disk defined geometrically has any corre-
spondence to physical quantities of the quantum system?
Does a geodesic, the shortest distance between two
points, leads to any significant observations in quantum
dynamics? We will answer these questions in the following
discussions.
To establish a one-to-one correspondence between the

quantum dynamics and a Poincaré disk, we consider the
vacuum, jΨð0Þi ¼ j0ik⃗j0i−k⃗, where ck⃗j0ik⃗ ¼ 0. The two
operators in Eq. (8) deliver a wave function,
jzi ¼ Rðφ0ÞBðφ1; 0ÞR†ðφ0ÞjΨð0Þi, which is written as

jzi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jzj2

q X
n

znjnik⃗jni−k⃗; ð9Þ

where z ¼ −ie−iφ0 tanh φ1

2
and jnik⃗ ¼ c†n

k⃗
j0i= ffiffiffiffiffi

n!
p

. In high
energy physics, the expression in Eq. (9) is called a
thermofield double state (TFD) state [3–6,24,25]. In
quantum optics, it is referred to as a two-mode squeezed
state, which can be created through nondegenerate para-
metric amplification [46]. Creating squeezed states from
squeeze operators has been well studied in quantum optics
[47], and such a connection with BECs has also been
recently studied [43]. Equation (9) can be derived using
explicit forms of the boost and rotation operators [29].

(a) (b)(a) (b)

FIG. 1. (a) A negative interaction scatters bosons from the
condensate to states with opposite momenta. States with small
kinetic energies have exponentially growing occupations.
(b) Each point on a Poincaré disk represents a TFD. The color
scale highlights the particle number or equivalently, the effective
temperature. Dashed straight lines and curves represent the
geodesics. Arrowed curves denote trajectories representing
dynamical evolutions of the quantum system. The blue curve
following the geodesic corresponds to an extreme of the time
spent in a quench dynamics.
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Since jzj ¼ jxþ iyj ≤ 1, we identify each TFD in Eq. (9)
with a unique point on the Poincaré disk.
Tracing over half of the system in TFD leaves the other

half with a thermal density matrix,

ρk⃗ ¼ Tr−k⃗jzihzj ¼ Z−1
X
n

e−
nE

k⃗
kBT jnik⃗hnjk⃗; ð10Þ

similar to Hawking radiation and Unruh effects [48,49]. In
Eq. (10), we have identified the Euclidean distance to the
center of the disk jzj with a temperature

T̃ ≡ kBT
Ek

¼ −
1

2
ln−1 jzj; ð11Þ

and Z ¼ 1 − e−Ek⃗=kBT . Each point on the Poincaré disk can
be assigned with a temperature and the boundary circle
corresponds to T ¼ ∞. In quantum information, the close-
ness between two states is often characterized by their
overlap, i.e., their fidelity [50]. Here, the fidelity between
TFDs, Fz;z0 ¼ jhz0jzij2, is written as

jhzjz0ij2 ¼ ð1 − jzj2Þð1 − jz0j2Þ
j1 − z�z0j2 : ð12Þ

Consider two TFDs close to each other on the Poincaré
disk, i.e., z0 ¼ zþ dz, from the above expression, we
obtain Eq. (3). The fidelity between TFDs thus corresponds
to the metric of a Poincaré disk. The metric of a Poincaré
disk can also be correlated to the complexities of the SU
(1,1) coherent states [51].
We now consider quenching asðtÞ from zero to a finite

negative value. When Ek⃗ > 2jUj or, equivalently, ξ2 > 0,
the growth of nk⃗ is bounded from above and is referred as to
a stable mode. On the Poincaré disk, it is described by a
closed loop, as shown in Fig. 2(b). When Ek⃗ ¼ 2jUj, ξ
vanishes and the topology of the trajectory changes. When
Ek⃗ < 2jUj, i.e., ξ2 < 0, the well-known dynamical insta-
bility occurs and nk⃗ grows exponentially, mimicking the
inflation in the early Universe [14]. On the Poincaré disk,
any unstable mode corresponds to an open trajectory,
starting from the origin and extending to the circular
boundary. However, it takes infinite time to reach there,
since the boundary of the Poincaré disk corresponds to
infinity.
When Ek ¼ jUj, starting from the center of the Poincaré

disk, the trajectory follows the diameter, i.e., a geodesic.
The Euclidean distance to the center is written as

jzðtÞj ¼

8>>><
>>>:

�
1 − ξ2

ξ2
1
þξ2

2

1

sinh2ðjξjt
2
Þ

�
−1
2

; ξ2 < 0;

�
1þ ξ2

ξ2
1
þξ2

2

1

sin2ðjξjt
2
Þ

�
−1
2

; ξ2 > 0:

ð13Þ

We see from Eq. (13) that, if we fix ξ21 þ ξ22, jzðtÞj grows
fastest when ξ0 ¼ 0, i.e., when the system moves along the
geodesic. Under this situation

jzðtÞjg ¼ tanh

�jξj
2
t

�
: ð14Þ

Using the metric in Eq. (3), the length along the geodesic is
given by

L̃ ¼
Z jzðtÞjg

0

2dx
1 − x2

¼ jξjt: ð15Þ

We thus have proved Eq. (1). Using Eqs. (11), (14), (15), it
is also straightforward to prove Eq. (2). It is worth pointing
out that, once jξj is fixed, Eq. (13) shows that the geodesic
corresponds to the slowest growth among unstable modes.
As seen from numerical results plotted in Fig. 2(c), the
resonant mode does grow slower than other unstable
modes. For off-resonant modes, the trajectories are no
longer geodesics and the length along such a trajectory as a
function of the time has an expression similar to Eq. (15)
(Supplemental Material [29]).
If the initial scattering length is finite, the ground state

is no longer a vacuum. The quantum dynamics starts from a
point away from the center of the Poincaré disk.
A Möbius transformation preserving the metric,
z0 ¼ MðzÞ ¼ ðαzþ βÞ=ðβ�zþ α�Þ, jαj2 − jβj2 ¼ 1, could

(a)

(b)

(c)

(d)

FIG. 2. (a) The dependence of Nk⃗ (left vertical axis) and the
rescaled temperature T̃ (right vertical axis) as a function of time.
Ẽk⃗ ¼ Ek⃗=jUj. When U is fixed, the resonant mode has the fastest
growth. (b) The stable(unstable) modes are mapped to closed
(open) trajectories on the Poincaré disk. The resonant mode
moves along the geodesic. (c) When jξj is fixed, the resonant
mode has the slowest growth. (d) A Möbius transformation maps
an arbitrary initial state to the vacuum at the center of the Poincaré
disk. The geodesic becomes a straight line and retains its length.
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map the origin to any other point on the disk, and thus all
phenomena remain the same compared with starting from a
vacuum. For any initial and final states, jz1i and jz2i, the
quantum dynamics could follow a geodesic, which in
general is not a straight line, using a Hamiltonian,

H=jξj¼ −Imz1z�2
jz1−z2jjz1z�2−1jðc

†
k⃗
ck⃗þc−k⃗c

†
−k⃗
Þ

þ iðz2−z1þjz1j2z2− jz2j2z1Þ
2jz1−z2jjz1z�2−1j c†

k⃗
c†
−k⃗
þH:c: ð16Þ

To realize the Hamiltonian in Eq. (16), it is required that
one could tune θ in Eq. (5) [29].
We now turn to periodic drivings. Consider an example

that is directly relevant to current experiments,

H1 ¼ 2ðEk⃗ þ UÞK0 þ 2UK1; 0 < t < t1; ð17Þ

H2 ¼ 2Ek⃗K0; t1 < t < Td; ð18Þ

where the period Td ¼ t1 þ t2. It corresponds to periodi-
cally modifying the interaction strength in Eq. (4). When
as ¼ 0, the propagator from t ¼ t1 to t ¼ Td is given by
Eq. (8), i.e., a rotation about the center of the Poincaré disk.
Such drivings allow us to manipulate both the stable and
unstable modes [29]. A particularly interesting case is a
quantum revival of the initial state at the end of the second
period. We emphasize that such a revival is accessible for
any initial state, and any H1 in Eq. (17), not requiring a
vacuum as the initial state nor a Hamiltonian satisfying the
resonant condition [14,42]. We consider an arbitrary
H1 ¼ w0K0 þ w1K1 þ w2K2 with a field strength w. The
Baker-Hausdorff-Campbell formula decomposes the pro-
pagator U1 ¼ e−iH1t1 into

U1 ¼ e−iζ1K0e−iη1ðK1 cosϕ1þK2 sinϕ1Þe−iζ1K0 ; ð19Þ

where ζ1 ¼ arctanððw0=wÞ tanðwt1=2ÞÞ, ϕ1¼ arccosðw1=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1þw2

2

p
Þ, and η1¼2arcsinhðð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1þw2

2

p
=wÞsinðwt1=2ÞÞ.

A quantum revival on a Poincaré disk requires that
ðU2U1Þ2 ¼ 1. Using the identity Bðη cosϕ; η sinϕÞ
RðπÞBðη cosϕ; η sinϕÞ ¼ RðπÞ, where ϕ and η are two
arbitrary real numbers, we conclude that U2 ¼ e−iH2t2

should satisfy

U2 ¼ e−iπK0e−iðK1 cosϕþK2 sinϕÞηU−1
1 : ð20Þ

This SU(1,1) echo is analogous to the standard spin echo
using SU(2) [17], and is applicable in a variety of bosonic
systems. U2U1 corresponds to an arbitrary boost
followed by a π rotation, U2U1¼RðπÞBðηcosϕ;ηsinϕÞ.
Equation (20) readily determines H2 and t2. Since ϕ and η
are arbitrary, for any H1, there is a family of H2, not just a
single Hamiltonian, that could lead to the revival.

Choosing η ¼ η1;ϕ ¼ ϕ1 − ζ1, we obtain H2 ¼ u0K0,
and t2 ¼ ðπ − 2ζ1Þ=u0. This means that quenching back to
zero scattering length in Eq. (5) during the time interval
from t1 to t2 reverses the quantum dynamics at
t ¼ 2ðt1 þ t2Þ, as shown in Fig. 3. Alternatively, if we
quench the scattering length to a finite value, which
amounts to a different choice of η and ϕ, the trajectory
from t ¼ t1 to t ¼ t2 is no longer a concentric circle on the
Poincaré disk. Nevertheless, an appropriate t2 still leads to a
quantum revival, as shown in Fig. 3. If we define
Bðηcosϕ;ηsinϕÞjz0i¼ jz01i, Bðη cosϕ; η sinϕÞjz1i ¼ jz00i,
we see that z0 ¼ −z00 and z1 ¼ −z01 are satisfied by both
cases, providing us with a geometric interpretation of the
quantum revival. We thus conclude, for anyH1 and t1, there
is a family of H2 to deliver e−iH2t2e−iH1t1e−iH2t2 ¼ eiH1t1.
The SU(1,1) echo thus effectively creates a reversed
evolution based on −H1, an essential ingredient in studying
OTOC [24–27].
We now consider interactions between excited particles.

As the population of the resonant mode grows fastest when
U is fixed, interactions at this mode become the dominant
corrections. The Hamiltonian becomes H̃k⃗ ¼ Hk⃗ þH0

k⃗
,

where H0
k⃗
¼U0ð4c†

k⃗
ck⃗c

†
−k⃗
c−k⃗þc†

k⃗
c†
k⃗
ck⃗ck⃗þc†

−k⃗
c†
−k⃗
c−k⃗c−k⃗Þ

can be rewritten as

H0
k⃗
¼ 6U0ðK0 − 2=3Þ2; ð21Þ

if the initial state is the two-mode vacuum. Without loss of
generality, we have denoted the interactions between

(a) (b)

(c) (d)

FIG. 3. SU(1,1) echoes. (a),(b) and (c),(d) The results of
quenching the interaction from U1 to 0 and U1=2e−iπ=2, respec-
tively, in the time interval from t ¼ t1 to t2. t1jU1j ¼ 0.8,
Ek=jU1j ¼ 1.3. Insets show the modulation of interaction
strength. Starting from any initial state z0, an appropriate t2
guarantees that the system returns to the initial state after two
periods of driving. Blue and green arrowed curves represent U1

and U2, respectively. Red dashed curves with single and double
arrows denote the boost, Bðη cosϕ; η sinϕÞ, and the rotation,
RðπÞ, respectively, of U1U2.
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excited particles as U0. Here, U0 ¼ Ũ=2V but in other
systems, U0 might be independent of the unperturbed
Hamiltonian. A finite U0 breaks the SU(1,1) symmetry,
and an SU(1,1) echo will not lead to a perfect revival of the
initial state. The SU(1,1) echo thus can be implemented as a
unique tool to measure the interactions between excited
particles, in the same spirit of using the spin echo to extract
interactions between spins and other useful information.
Using the suð1; 1Þ algebra, we obtain analytical results of
the population at t ¼ 2mTd;m ∈ N [29],

Nk⃗ð2mTdÞ ¼
27 coshð8ŨjΨ0j2t1Þ

16Ũ2jΨ0j4
m2U02: ð22Þ

Confirmed by numerical calculations, Eq. (22) shows that
Nk⃗ð2mTdÞ vanishes when U0 ¼ 0. If U0 ≠ 0, Nk⃗ð2mTdÞ
increases quadratically as a function ofm, as shown in Fig. 4.
Thus, the imperfect revival unveils U0. In particular,
Nk⃗ð2mTdÞ depends on ŨjΨ0j2t1 exponentially. Increasing
t1 could further improve the precision of the measurement.
Alternatively, if U0 is known, Eq. (22) allows experimen-
talists to measure ŨjΨ0j2t1 with high precision due to the
exponential dependence of Nk⃗ð2mTdÞ on this parameter.
Whereas we have been focusing on quenching and

periodically driving interactions in BECs, our results
obtained by algebraic methods apply to any systems with
the SU(1,1) symmetry, including but not limited to the
unitary fermions and 2D bosons and fermions with contact
interaction [52–56]. For instance, SU(1,1) echoes could be
implemented to breathers of two-dimensional BECs, which
was recently studied in an elegant experiment [57].
We hope that our work will stimulate more research efforts
to unfold the intrinsic entanglement between dynamics,
algebras, and geometries.
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