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Though the celebrated spin echoes have been widely used to reverse quantum dynamics, they are not
applicable to systems whose constituents are beyond the control of the suð2Þ algebra. Here, we design
echoes to reverse quantum dynamics of breathers in three-dimensional unitary fermions and two-
dimensional bosons and fermions with contact interactions, which are governed by an underlying suð1; 1Þ
algebra. Geometrically, SUð1; 1Þ echoes produce closed trajectories on a single or multiple Poincaré disks
and thus could recover any initial states without changing the sign of the Hamiltonian. In particular, the
initial shape of a breather determines the superposition of trajectories on multiple Poincaré disks and
whether the revival time has period multiplication. Our work provides physicists with a recipe to tailor
collective excitations of interacting many-body systems.
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It is notoriously difficult to reverse quantum many-body
dynamics, which requires changing the signs of all terms in
the Hamiltonian simultaneously and reversing the dynam-
ics of all particles in a synchronized means. Nevertheless,
the well-established spin echoes [1] have been widely used
to overcome dephasing in spin systems, laying the foun-
dation of many modern technologies, ranging from the
nuclear magnetic resonance to the central spin problem in
condensed matter systems [2–4].
The study of collective excitations has been a main

theme in ultracold atoms and related topics [5–9].
Breathing modes (or breathers) of interacting fermions
and bosons have provided physicists with valuable infor-
mation about superfluidity and hydrodynamics in the past
two decades [10–15]. However, it is in general a grand
challenge to recover the initial state once collective
excitations are generated. The standard spin echoes do
not apply to these breathers, whose relevant degrees of
freedom do not obey the suð2Þ algebra. A crucial question
then arises. Could we reverse many-body dynamics of
breathers in interacting bosons and fermions?
In this work, we implement the SUð1; 1Þ group to design

echoes to reverse collective excitations of quantum gases. If
the initial state is an eigenstate of a harmonic trap, SUð1; 1Þ
echoes can be geometrized using a single Poincaré disk and
guarantee that the initial state returns at 2nT, where n is an
integer and T is the period of repeated drivings. When the
initial state is not an eigenstate of a harmonic trap, multiple
Poincaré disks are required to describe the dynamics. The
interference between trajectories on these Poincaré disks
determines whether the revival time is 2T or longer, the
latter corresponding to period multiplication. When incom-
mensurate frequencies exist in the dynamics, the revival

time extends to infinity. These results shed light on
remarkable phenomena observed in a recent experiment
by Dalibard’s group at ENS [16].
Following the seminal work by Pitaevskii and Rosch

[17], breathers in quantum gases have been extensively
studied [18–26]. However, the fundamentally important
role of initial shapes was not noted until the ENS experi-
ment [16], which found that the period of a triangular
breather agrees with well-known results in harmonic traps
when the quantum anomaly is negligible. In sharp contrast,
an initial disk shape leads to an unprecedented period
multiplication, quadrupling that of a triangle. Such an
observation is readily beyond understandings built upon
previous works [17–26]. More strikingly, other shapes do
not have regular periodicities in experimentally accessible
timescales, though the underlying Hamiltonian of breathers
naturally defines a period. This remarkable ENS experi-
ment remains unexplained as of now. Here, we show that
these extraordinary behaviors of breathers originate from
an intrinsic property of representing the SUð1; 1Þ group. In
particular, the underlying algebra and the geometric rep-
resentation of SUð1; 1Þ echoes allow us to infer how initial
shapes of breathers lead to distinct superpositions of
Poincaré disks and consequently, the revival times.
Generators of SUð1; 1Þ satisfy

½K1;K2� ¼−iK0; ½K2;K0� ¼ iK1; ½K0;K1� ¼ iK2: ð1Þ

Geometrically, SUð1; 1Þ=Uð1Þ corresponds to a Poincaré
disk [27], where each point on the disk is an SUð1; 1Þ
coherent state, as shown in Fig. 1. Such a coherent state
characterized by a complex number jzj < 1 is written as
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jk; zi ¼ ð1 − jzj2Þk
X∞
n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð2kþ nÞ

Γðnþ 1ÞΓð2kÞ

s
znjk; ni; ð2Þ

where ΓðxÞ is the gamma function. k is determined by the
Casimir operator C ¼ K2

0 − K2
1 − K2

2, Cjk; ni ¼ kðk−
1Þjk; ni. A single Poincaré disk is characterized by a
unique k. n is obtained from K0jk; ni ¼ ðkþ nÞjk; ni.
SUð1; 1Þ has been widely applied in multiple disciplines

[28–40]. However, it has not been implemented to study
echoes until very recently.We have found that the dynamical
instability of a BEC induced by quenching the scattering
length, which corresponds to a particular realization of the
SUð1; 1Þ group, could be reversed by a family of SUð1; 1Þ
echoes [41]. The same representation of the SUð1; 1Þ group
has also been considered for studying periodically driven
BECs in Refs. [42,43]. In such a particular representation
[41–43], k is either a positive integer or half integer. This is
similar to spin systems,whoseCasimir operator is equivalent
to the angular momentum. In both cases, the integral or half-
integral k guarantees an echo has a single period. In sharp
contrast, breathers considered here correspond to a distinct
representation that has a continuous spectrum of k. Such
fundamental difference provides breathers with much richer
phenomena ranging from an arbitrary multiplication of the
period to dynamics with noncommensurate frequencies.
K0 is the Hamiltonian of trapped BECs [17],

K0 ¼
1

2

�X
i

−
1

2
∇2

i þ
1

2
r2i þ

X
i<j

Vðri − rjÞ
�
;

K1 ¼
1

2

�X
i

−
1

2
∇2

i −
1

2
r2i þ

X
i<j

Vðri − rjÞ
�
;

K2 ¼
1

4i

X
i

ðri · ∇i þ∇i · riÞ: ð3Þ

We have chosen lho ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðmω0Þ

p
as the unit length and

ℏω0 as the unit energy. In three dimensions, both

noninteracting systems and unitary fermions satisfy the
commutators in Eq. (1). In the latter case, Vðri − rjÞ should
be understood as Vðri − rjÞ ¼ Ṽðri − rjÞδσi≠σj , where
σi ¼ ↑;↓, and produces a divergent scattering length. In
two dimensions, fermions and bosons with contact inter-
actions, Vðri − rjÞ ∼ gδðri − rjÞ, also have the SUð1; 1Þ
symmetry, as δ2DðλrÞ ¼ λ−2δ2DðrÞ. In single-component
bosons, interactions exist between any pair of particles.
SUð1; 1Þ echoes arise from the identity,

e−iðφ1K1þφ2K2Þe−iπK0e−iðφ1K1þφ2K2ÞeiπK0 ¼ I ; ð4Þ

where I is the identity operator, φ1 and φ2 are two arbitrary
real numbers. On the Poincaré disk, e−iπK0 is a rotation of π
about the origin, and e−iðφ1K1þφ2K2Þ is a boost changing jzj.
A simple echo is illustrated in Fig. 1(b). Starting from a
given initial state, U1 ¼ e−iφ1K1 moves it along a diameter
and is followed by a rotation U0 ¼ e−iπK0 . Using Eq. (4),
we conclude ðU0U1Þ2 ¼ e−i2πK0 , i.e., a rotation of 2π about
the origin, and thus the initial state is recovered. This echo
applies to any initial states on the Poincaré disk and
any φ1K1 þ φ2K2.
Whereas our results apply to any eigenstates of a

harmonic trap, we first choose the ground state of the
Hamiltonian, H0 ¼ 2K0, as the initial state as an example
to demonstrate our scheme. To implement an SUð1; 1Þ
echo, the trapping frequency is suddenly changed to ω1 ¼
κω0 at t ¼ 0, where κ is an arbitrary real or imaginary
number. In the latter case, it corresponds to an inverted
harmonic trap. When t ¼ t1, the original harmonic trap is
restored and the system evolves for another time period t0.
Then the above two steps are repeated. Such dynamics are
governed by the Hamiltonians

H1 ¼ ð1þ κ2ÞK0 þ ð1 − κ2ÞK1; nT < t < nT þ t1;

H0 ¼ 2K0; nT þ t1 < t < ðnþ 1ÞT; ð5Þ

where n is a non-negative integer, and T ¼ t0 þ t1 defines a
period. The propagator, ðU0U1Þ2 ¼ ðe−iH0t0e−iH1t1Þ2, from
t ¼ nT to t ¼ ðnþ 2ÞT can be rewritten as

e−iðζ1þ2t0ÞK0e−iη1K1e−ið2ζ1þ2t0ÞK0e−iη1K1e−iζ1K0 ; ð6Þ

where ζ1 ¼ arctanf½ð1þ κ2Þ=2κ� tan κt1g and η1 ¼
2arcsinhf½ð1 − κ2Þ=2κ� sinðκt1Þg. We have used the
Baker-Campbell-Hausdorff decomposition,

e−iðξ0K0þξ1K1þξ2K2Þ ¼ e−iζK0e−iηðK1 cosϕþK2 sinϕÞe−iζK0 ; ð7Þ

where tan ζ ¼ ½ðξ0=ξÞ tanðξ=2Þ�, cosϕ ¼ ½ξ1=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 þ ξ22

p
Þ�,

sinhðη=2Þ ¼ ½ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 þ ξ22

p
Þ=ξ� sinðξ=2Þ, and ξ2 ¼

ξ20 − ξ21 − ξ22. To deliver an echo, it is required that
π ¼ 2ðt0 þ ζ1Þ, or, equivalently,

(a) (b)

FIG. 1. (a) A spin echo on a Bloch sphere. z0 denotes the initial
state. a1 and a3 represent rotations about the y axis. a2 and a4
represent π pulses about the z axis. (b) An SUð1; 1Þ echo on a
Poincaré disk. b1 and b3 represent boosts, which are induced by
the same Hamiltonian H, along a radial direction. b2 and b4
represent π rotations about the origin.
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t0 ¼
π

2
− ζ1 ¼

π

2
− arctan

�
1þ κ2

2κ
tan κt1

�
: ð8Þ

Under this condition, ðU0U1Þ2 ¼ e−i2πK0 . As any eigenstate
of a harmonic trap is also an eigenstate of C with an
eigenvalue kðk − 1Þ, only an extra overall phase shows up
and the system returns to the initial state after two driving
periods. Once H0 and H1 are fixed, tuning t0 to deliver an
SUð1; 1Þ echo is an analog of adjusting the duration of the
pulse to create a π rotation on a Bloch sphere in spin
echoes. There also exist echoes allowing the initial state to
return in a longer time, say t ¼ 3nT (Supplemental
Material [44]).
The expectation value of the potential energy, Epot ¼

h1
2

P
i r

2
i i in the time interval nT þ t1 < t < ðnþ 1ÞT can

be written as Epot ¼ hK0 − K1i. Using properties of
SUð1; 1Þ coherent states, hk; zjK0jk; zi ¼ k½ð1þ jzj2Þ=
ð1 − jzj2Þ�, hk; zjK1jk; zi ¼ 2kfReðzÞ=½1 − jzj2�g, we
obtain

Epot ¼ k½1þ jzj2 − 2ReðzÞ�=ð1 − jzj2Þ: ð9Þ

Epot in the time interval nT < t < nT þ t1 simply multi-
plies the above equation by κ2. Apparently, Epot is periodic
with period 2T. For the system prepared in the ground state
of H0 with ground state energy Eg, we have k ¼ Eg=2.
Results above are valid for any eigenstates of the initial
Hamiltonian, hold for any finite temperatures at thermal
equilibrium, and k in Eq. (9) should be understood as
hK0ithermal ¼ TrðK0e−βH0Þ=Trðe−βH0Þ, where β is the
inverse temperature.

It is useful to consider 2D bosons as an example.
Whereas it is difficult to compute the exact many-body
state in the quantum dynamics controlled by the suð1; 1Þ
algebra, in the weakly interacting regime, such dynamics is
well captured by a Gross-Pitaevskii (GP) equation,

i
∂Ψðr; tÞ

∂t ¼
�
−
∇2

2
þ κðtÞ2r2

2
þ gNjΨðr; tÞj2

�
Ψðr; tÞ;

ð10Þ

where N is the number of bosons, g ¼ 4πa0 with a0 being
the dimensionless scattering length. We use an imaginary
time evolution to obtain the ground state of the initial
Hamiltonian, H0. We then let the condensate evolve based
on the GP equation, in which the Hamiltonian is deter-
mined by Eq. (5). We trace both the overlap betweenΨðr; tÞ
andΨðr; 0Þ, FðtÞ ¼ j R drΨ�ðr; 0ÞΨðr; tÞj, and the absolute
value of the potential energy, jEpotj. Figure 2 shows a few
typical choices. (I), κ is real, corresponding to a harmonic
trap whose frequency could be different from the initial
one. (II), κ ¼ 0, corresponding to turning off the harmonic
trap. (III), κ is purely imaginary, meaning an inverted
harmonic trap. For a generic H ¼ P

i¼0;1;2 ξiKi, ξ⃗ ¼
fξ0; ξ1; ξ2g defines an external field with a strength,
ξ2 ¼ ξ20 − ξ21 − ξ22. For instance, in Eq. (5), we have
ξ ¼ 2κ. In (I), ξ2 > 0, and the system follows a closed
loop on the Poincaré disk. In (II), ξ vanishes. Without a
confining potential in the real space, the trajectory on the
Poincaré disk eventually becomes tangent with the boun-
dary circle. In (III), ξ becomes purely imaginary. While a
deconfining potential pushes BECs to expand in the real
space, on the Poincaré disk, the trajectory becomes an open

(a) (c) (d)

(b)

FIG. 2. (a)–(b) FðtÞ and hr2ðtÞi=2 of 2D BECs. The initial state is the ground state of K0. κ ¼ 2, 0 correspond to a modified and
vanishing harmonic trap in the time interval, nT < t < nT þ t1, respectively. κ ¼ i; 2i correspond to inverted harmonic traps.
Ng ¼ 25600, ω0 ¼ 20 × 2πHz and t1 ¼ π=8. t0 is determined by Eq. (8). (c) Left panel: harmonic traps in different time intervals. Right
panel: snapshots of densities at different times for κ ¼ 2i. (d) Trajectories on the Poincaré disk. Dotted and solid lines are evolutions
governed by H1 and H0, respectively. Dot-dashed lines show the trajectories if only H1 is applied.
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path. Though quantum dynamics governed by H1 alone in
(I)–(III) are distinct, SUð1; 1Þ echoes always lead to
revivals. Figure 2 clearly shows that both FðtÞ and jEpotj
are periodic functions of t with a period of 2T.
The initial state could also be a superposition of multiple

eigenstates of C such that multiple Poincaré disks are
required. We consider an arbitrary propagator U in the
SUð1; 1Þ group acting on jΨi ¼ P

n;k cnkjk; ni ¼
P

k jψki,
where jψki ¼

P
n cnkjk; ni and hψk0 jψki ∼ δk;k0 . Here we

have suppressed other quantum numbers for the same k, n.
As UjΨi ¼ P

k Ujψki, and Ujψki corresponds to an
evolution on a single Poincaré disk, the dynamics thus
correspond to superpositions of trajectories on multiple
Poincaré disks. If an echo, ðU0U1Þ2 ¼ e−2iπK0 , acts on the
initial state for m times, where m is an integer, we obtain

e−2iπmK0 jΨi ¼
X
n;k

cnke−2iπmkjk; ni: ð11Þ

Replacing the sum in Eq. (11) by an integral over k, this
initial state shall, in general, include incommensurate k’s
and thus lacks a finite periodicity. Here we consider
systems with well-defined periodicities and apply summa-
tion of discrete k’s. Since e−2iπmk is independent
of n, the return probability PðmÞ ¼ jhΨð0ÞjΨð2mTÞij2
becomes PðmÞ¼ jPk P̃ke−2iπmkj2, where P̃k ¼

P
n jcnkj2,P

k P̃k ¼ 1. It is apparent that PðmÞ ¼ 1 only if e−2iπmk ¼
eiϕ0 for all k’s with a nonzero cnk, where ϕ0 ∈ ½0; 2πÞ is
independent of k. This is certainly satisfied if the initial
state includes a single state, jk0; n0i. It is also clear that
e−2iπmk ¼ eiϕ0 will never be satisfied if jΨi includes
incommensurate k’s. Whereas such a scenario is impossible
in previous works [41–43], in breathers with a continuous
spectrum of k, dynamics controlled by incommensurate k’s
may arise.
If k’s in Eq. (11) are commensurate, i.e., all k’s are

represented by k ¼ k0 þ p=Q, where k0 is a given refer-
ence with a nonzero cnk0 , p ∈ Z,Q ∈ Nþ, and p and Q are
co-prime numbers, we have PðQÞ ¼ 1, and the system
evolves back to its initial state after 2Q periods. Therefore,
different superpositions of jk; ni in the initial state may lead
to distinct revival times after SUð1; 1Þ echoes are applied. If
Q > 1, period multiplication emerges in the dynamics.
Figure 3 shows examples corresponding to Q ¼ 1 and
Q ¼ 4. Consequently, revival times are 2T and 8T, i.e.,
period quadruples in the latter case.
Applying the above analysis to breathers of different

initial shapes, we observe that the triangle and the disk
correspond to Q ¼ 1 and Q ¼ 4, respectively. The initial
state is chosen as the ground state of a flat-box potential
with an infinite potential wall. Such an initial state is no
longer an eigenstate of K0, and it is useful to fully
implement the suð1; 1Þ algebra to consider the dynamics.
After turning off the flat-box potential, the system
evolves based on Eq. (5). FðtÞ of a triangle satisfies

FðtÞ ¼ Fðtþ 2TÞ. As the initial state is not an eigenstate
of K0, it must be a superposition of multiple jk; ni with
differences between k’s being integers, i.e., Q ¼ 1 as
shown in Fig. 3(a). The exact number of Poincaré disks
can be, in principle, determined by considering a particular
Hamiltonian, H̃ ≡ C, e−iH̃tjΨi ¼ P

nk cnke
−ikðk−1Þtjn; ki ¼P

k e
−ikðk−1Þtjψki. A Fourier transform of FðtÞ ¼P

k e
−ikðk−1Þthψkjψki to the frequency space unfolds how

many k’s are involved and their corresponding weights.

(a)

(b)

FIG. 3. (a) At t ¼ 2T, trajectories on different disks accumulate
the same phase. The system returns to the initial state. (b) Tra-
jectories on different disks acquire relative phases. It takes the
system 8T to return to the initial state.

(a)

(b)

FIG. 4. (a) FðtÞ of breathers with an initial triangular (top) and
disk (bottom) shapes, respectively. ω0 ¼ 40 × 2π Hz, t1 ¼ π=8,
and κ ¼ 0.5i. Ng ¼ 25600 (12800) is used for the triangle (disk).
The background color represents the time-dependent relative
phase between different Poincaré disk. (b) Density distributions
of BECs at different times.
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Nevertheless, such calculations are not essential here, since
our echoes apply to any superpositions in Eq. (11),
regardless of the exact number of Poincaré disks involved.
The results of a disk’s shape are distinct. Figure 4 shows

that the revival time of the disk is 8T. We conclude that the
superposition in the initial state must be similar to Fig. 3(b).
The quench dynamics in the ENS experiment has a
propagator, e−iK0t, corresponding to SUð1; 1Þ echoes where
t1 ¼ 0. Such quench dynamics has a periodicity of 2T and
8T for the triangle and the disk, respectively [16]. This also
confirms that the triangle and the disk corresponds to a
superposition of multiple Poincaré disks with Q ¼ 1 and
Q ¼ 4, respectively. We have not found other shapes, such
as a square, which return to the initial states within
timescales of our numerical simulations, similar to results
of the quench dynamics [16]. We conclude that these
shapes are described by either incommensurate k’s or
commensurate k’s corresponding to a very large Q, which
lead to revival times not observable in relevant timescales
of numerics and experiments.
In experiments, it is the exact many-body state that

evolves under the control of SUð1; 1Þ echoes. Results of the
GP equation are expected to provide us with a good
approximation in the weakly interacting limit.
Nevertheless, the precise form of the many-body state
corresponding to a given initial shape of the breather
remains an interesting open question worthy of future
studies. In contrast, cnk can be straightforwardly obtained
in few-body systems. For instance, in a two-body problem,
eigenvalues of the Casimir operator are directly related to
the angular momenta such that the initial shape of the
breather allows one to directly predict the revival time
(Supplemental Material [44]). Similar to spin echoes,
SUð1; 1Þ echoes could be implemented to detect symmetry
breaking perturbations, such as an extra external potential
in experiments (Supplemental Material [44]).
Our results are obtained by an algebraic method inde-

pendent on the representation and apply to any systems
with the SUð1; 1Þ symmetry. We hope that our work will
stimulate more interest from different disciplines to use
geometric approaches to control quantum dynamics in few-
body and many-body systems.
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