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We perform the four-body calculation of the hyperfine structure in the first rotational state J ¼ 1 of the
H2, D2, and HD molecules and determine the accurate value for the deuteron electric quadrupole moment
Qd ¼ 0.285 699ð15Þð18Þ fm2 in significant disagreement with former spectroscopic determinations. Our
results for the hyperfine parameters agree very well with the currently most accurate molecular-beam
magnetic resonance measurement performed several decades ago by N.F. Ramsey and coworkers. They
also indicate the significance of previously neglected nonadiabatic effects. Moreover, a very good
agreement with the recent calculation of Qd based on the chiral effective field theory, although much less
accurate, indicates the importance of the spin dependence of nucleon interactions in the accurate
description of nuclei.
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Precise atomic and molecular spectroscopy provides
information on the nuclear electromagnetic moments
important for testing theories of nuclear interactions [1–5]
or even for searching for new physics [6]. This, however,
requires a thorough understanding of the variety of inter-
particle interactions in atoms and molecules. For instance,
the proton mean square charge radius has been extracted
with unprecedented accuracy from the muonic hydrogen
Lamb shift [7] only after careful analysis of all the
important quantum electrodynamical effects. A similar
determination has recently been performed for the alpha
particle from the corresponding measurement in muonic
helium [8]. Regarding nuclear magnetic moments, the
direct measurement in a Penning trap was performed only
for the proton [9], while magnetic moments of heavier
stable nuclei have been determined by the nuclear magnetic
resonance or the atomic hyperfine splitting measurements.
Accordingly, the currently most accurate magnetic
moments of deuteron and triton were determined by
combining the nuclear magnetic resonance measurements
with precise calculations of the molecular shielding factor
[10]. Concerning the determination of nuclear magnetic
moments from the hyperfine splitting, their accurate cal-
culation is particularly difficult due to a large contribution
from the not-well-known spin-dependent nuclear structure.
The widely accepted Bohr-Weisskopf correction only
partially accounts for the nuclear effects [11]. A clear
indication of this problem is a strong and still unexplained
discrepancy for the Zemach radius of 6Li between the
nuclear model value [12] and the result based on the
spectroscopic data of the lithium atom [13], which has

recently been confirmed by independent measurements and
calculations in the Liþ ion [14,15].
In this Letter, we investigate the electric quadrupole

moment Qd of the deuteron on the basis of the hyperfine
splitting in HD and D2 molecules. The total electron spin of
such a two-electron system is zero, and the strengths of all
couplings among nuclear spins and the rotational angular
momentum are of the same order of magnitude. Therefore,
Qd can be extracted from the molecular hyperfine splitting
with an accuracy that is limited only by the measurement
uncertainty provided that sufficiently accurate theoretical
calculations with all significant contributions are available.
The recent determinations ofQd ¼ 0.285 98ð3Þ fm2 [16]

and Qd ¼ 0.285 783ð30Þ fm2 [17], considered to be the
most accurate value to date [18], neglect or underestimate
nonadiabatic effects, i.e., the effects beyond the commonly
employed Born-Oppenheimer (BO) approximation.
Indeed, these results disagree with the recommended value
reported in this work [see Eq. (24)] obtained in the
nonadiabatic approach, i.e., without separation of nuclear
and electronic motions.
In the following, we describe shortly the theory of the

molecular hyperfine splitting, its accurate calculations with
nonadiabatic wave functions, and the determination of Qd
from the measurements by Ramsey and coworkers.
Henceforth, we use the original notation byRamsey [19,20].
Hyperfine Hamiltonian.—There are three angular

momenta in the ground electronic state of the heteronuclear
HD molecule, which all couple to each other—the proton
spin I⃗p, that of the deuteron I⃗d, and the rotational angular
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momentum J⃗. The effective Hamiltonian describing these
interactions reads

Hhfs ¼ −cpI⃗p · J⃗ − cdI⃗d · J⃗

þ 5d1
ð2J − 1Þð2J þ 3Þ

�
3

2
ðI⃗p · J⃗ÞðI⃗d · J⃗Þ

þ 3

2
ðI⃗d · J⃗ÞðI⃗p · J⃗Þ − ðI⃗p · I⃗dÞJ⃗2

�

þ 5d2
ð2J − 1Þð2J þ 3Þ

�
3ðI⃗d · J⃗Þ2

þ 3

2
ðI⃗d · J⃗Þ − I⃗2dJ⃗

2

�
: ð1Þ

The above coefficients cp, cd, d1, and d2 are related,
respectively, to the interactions between the following: the
proton spin and molecular rotation, the deuteron spin and
rotation, the proton and deuteron spins, and the electric
quadrupole moment of the deuteron with the electric field
gradient [21]. For homonuclear molecules with odd J⃗, the
effective Hamiltonian takes a simplified form

Hhfs ¼ −cI⃗ · J⃗ þ 5d
ð2J − 1Þð2J þ 3Þ

×

�
3ðI⃗ · J⃗Þ2 þ 3

2
ðI⃗ · J⃗Þ − I⃗2J⃗2

�
; ð2Þ

where the total nuclear spin I⃗ ¼ I⃗A þ I⃗B is equal to 1, and
c ¼ cp, d ¼ d1=2 for H2, and c ¼ cd, d ¼ d1 − d2 for D2.
We will consider all these constants for the first rotational
level J ¼ 1 and v ¼ 0 and present a short derivation of
corresponding formulas followed by numerical calculations
using explicitly correlated wave functions. Both the der-
ivation and the calculations are performed in the non-
adiabatic regime.
The general spin-orbit Hamiltonian is of the form

δH ¼
X
α;β

eαeβ
4π

1

2r3αβ

�
gα

mαmβ
I⃗α · r⃗αβ × p⃗β

−
ðgα − 1Þ

m2
α

I⃗α · r⃗αβ × p⃗α

�
; ð3Þ

where the indices α and β are for electrons and nuclei. The
gyromagnetic factors

gp ¼ μp
μNIp

¼ 5.585 695… ð4Þ

gd ¼
μd
μNId

md

mp
¼ 1.714 025… ð5Þ

are related to the magnetic moment of the
proton μp ¼ 2.792 847 344 63ð82Þ μN and the deuteron

μd ¼ 0.857 438 2338ð22Þ μN , respectively [22]. The g
factor is a dimensionless quantity convenient for use in
the magnetic moment formulas. In particular, the coupling
of the nuclear spin I⃗A to the molecular rotation, using
Eq. (3), is

δAH ¼ I⃗A · Q⃗A ð6Þ

Q⃗A ¼ −
X
b

α

2r3Ab

�
gA

mAme
r⃗Ab × p⃗b −

ðgA − 1Þ
m2

A
r⃗Ab × p⃗A

�

þ α

2r3AB

�
gA

mAmB
r⃗AB × p⃗B −

ðgA − 1Þ
m2

A
r⃗AB × p⃗A

�
ð7Þ

and the spin-rotation coefficient is thus

cA ¼ 1

2
iϵijkhϕijQj

Ajϕki; ð8Þ

where ϕi is the wave function for the first rotational state
with normalization hϕijϕii ¼ 1.
The nuclear spin-spin direct interaction can be effec-

tively written as

δH ¼ IiAI
j
BQ

ij
AB ð9Þ

Qij
AB ¼ gAgB

4mAmB

α

r3AB

�
δij − 3

riABr
j
AB

r2AB

�
ð10Þ

and the corresponding d1 coefficient is

d1 ¼ −
1

5
hϕijQij

ABjϕji. ð11Þ

The omitted part of the spin-spin interaction, proportional
to δ3ðrABÞ, is negligibly small.
The interaction of a particle with the charge e, possessing

the electric quadrupole momentQij with the gradient of the
electric field, is given by

δH ¼ −
e
6
Qij∂jEi: ð12Þ

For a particle with a definite spin I ≥ 1, the Qij, as a
traceless and symmetric tensor, can be expressed in terms
of a single scalar electric quadrupole moment Q defined by

Qij ¼ Q
Ið2I − 1Þ

�
3

2
IiIj þ 3

2
IjIi − δijI⃗2

�
: ð13Þ

Referring to Eq. (1), the Ramsey’s constant d2 becomes
(in atomic units)

d2 ¼ −α2
Qq
10ƛ2

; ð14Þ
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where

q ¼ hϕij ∂2V

∂riA∂rjA
−
δij

3

∂2V
∂rkA∂rkA jϕ

ji ð15Þ

is the electric field gradient at the nucleus A, V is the
Coulomb potential of Eq. (18), and ƛ is the reduced
Compton wavelength of the electron.
Numerical calculations.—The nonadiabatic wave func-

tion Ψ is obtained from the variational principle with the
following nonrelativistic Hamiltonian for the hydrogen
molecule

H ¼ T þ V; ð16Þ

where (in atomic units)

T ¼ p⃗2
A

2mA
þ p⃗2

B

2mB
þ p⃗2

1

2
þ p⃗2

2

2
; ð17Þ

V ¼ 1

rAB
−

1

rA1
−

1

rA2
−

1

rB1
−

1

rB2
þ 1

r12
: ð18Þ

Here, indices A, B and 1, 2 denote nuclei and
electrons, respectively. The nuclear masses are those
currently recommended by CODATA [22]. The wave
function Ψ depends on four particle coordinates
Ψ ¼ Ψðr⃗A; r⃗B; r⃗1; r⃗2Þ. In the center of mass frame the total
momentum vanishes p⃗A þ p⃗B þ p⃗1 þ p⃗2 ¼ 0, and thus we
may assume that the wave function Ψ depends only on the
coordinate differences.
In the variational approach, the wave function is repre-

sented as a linear combination

Ψ ¼
XN
k

ckψkðr⃗A; r⃗B; r⃗1; r⃗2Þ ð19Þ

of properly symmetrized basis functions

ψk ¼ ð1� PA↔BÞð1þ P1↔2Þϕkðr⃗A; r⃗B; r⃗1; r⃗2Þ; ð20Þ

where Pi↔j is the particle exchange operator. In the J ¼ 1
state of H2 and D2 the wave function is antisymmetric with
respect to the exchange of nuclear spatial variables and
symmetric in electronic spatial variables, whereas in the
heteronuclear HD molecule, only electronic symmetry is
imposed, and both (nuclear) symmetric and antisymmetric
basis functions are employed. For J ¼ 1 the functions ϕk
in Eq. (20) are the nonadiabatic explicitly correlated
Gaussians (naECG) of the form

ϕi
k ¼ rirnAB

× e−ak;1r
2
AB−ak;2r

2
A1−ak;3r

2
A2−ak;4r

2
B1−ak;5r

2
B2−ak;6r

2
12 ; ð21Þ

where r⃗ (or ri) is the factor representing the angular
momentum J ¼ 1 and is either r⃗AB, r⃗A1, r⃗A2, r⃗B1, r⃗B2, or
r⃗12. The nonlinear ak parameters are optimized individually
for each basis function ϕk. The powers n of the internuclear
coordinate rAB, needed to represent accurately the vibra-
tional part of the wave function, are restricted to even
integers and are generated randomly for each basis function
from the log-normal distribution within the limited 0–80
range. Moreover, the number of basis functions with the
particular prefactor r⃗rnAB is subject to additional discrete
optimization. As a result, the nonrelativistic energy reaches
an accuracy of about 10−11 (see Table I).
Hyperfine parameters.—The hyperfine parameters for

the hydrogen molecule isotopologues obtained with the
above wave function are presented in Table I. The numeri-
cal convergence for the spin-orbit couplings cp and cd is
relatively slow, and the resulting numerical uncertainties
are not negligible. Most importantly, their difference from
BO values fits within the uncertainties, which indicates
that the estimation of the magnitude of nonadiabatic effects
by the ratio of the electron mass to the nuclear reduced
mass is correct. Moreover, the nonadiabatic and BO values
are, within uncertainties, in agreement with the Ramsey
measurements.
In contrast, the numerical convergence of d1 and q

parameters is very fast, and the corresponding inaccuracy is
negligible compared to the uncertainty due to unknown
higher order relativistic and QED effects. Again, the
difference with BO values is consistent with the estimate
of nonadiabatic effects, represented as an inaccuracy of the
BO values. We also note that the nonadiabatic d1 for HD
agrees with Ramsey’s measurements up to its uncertainty,
while for H2 it fits within 1.2σ. Regarding the q parameter,
the fast numerical convergence of the gradient of the
electric field enables six significant digits to be quoted.
Our recommended nonadiabatic value of

q ¼ 0.335 2307ð7Þ a:u: ð22Þ

obtained for D2 will be used in the next paragraph for
the determination of the deuteron quadrupole moment Qd.
We note that this value differs by 0.0006 a.u. from the
q ¼ 0.33466 a:u: obtained in the pioneering nonadiabatic
calculations by Bishop and Cheung [30]. This difference is
relatively large and shows that the former results in [30] are
not accurate enough to draw definite conclusions about the
magnitude of the nonadiabatic effects.
The quadrupole moment of deuteron.—Qd can be

determined most accurately from the coupling constant d
measured by the molecular-beam magnetic resonance
method of Code and Ramsey [26] for D2 in the first
rotational level. We obtain d2 from the difference d2 ¼
d1 − d of calculated d1 and measured d. Finally, we
evaluate the quadrupole moment from
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Qd ¼ −
d2

2Ryc
10ƛ2

α2q
ð23Þ

obtaining the recommended value of

Qd ¼ 0.285 699ð15Þð18Þ fm2: ð24Þ

The results of such calculations are summarized in Table II.
A comparison with literature data reported within the last
fifty years is presented in Table II and Fig. 1. The first
uncertainty assigned to our Qd is due to unknown higher
order relativistic and QED corrections to q, which are
estimated by a relative factor α2. The second uncertainty
comes from the measurement of d, while numerical
uncertainties are negligible. We should mention that the

second order magnetic dipole interaction, being also a kind
of relativistic correction, leads to the pseudoquadrupole
effect estimated by Ramsey to be of about 10−5 [31], and
this contribution is included in our α2 uncertainty.
This nonadiabatic Qd is in agreement with our BO value

[23], the relative uncertainty of which was estimated by the
ratio of the electron mass to the nuclear reduced mass. It is
in significant disagreement, though, with the recent most
accurate determination by Pavanello et al. [17] and Jóźwiak
et al. [16] (see Table II and Fig. 1). It is in agreement,
however, with the revised result by Bishop, quoted in 1983
by Ericson et al. [3], which served for a long time as a
reference value for Qd. A comparison of our result with
recent literature data indicates the significance of non-
adiabatic effects and also draws attention to the need for the

TABLE I. Convergence of the nonrelativistic energy E (in a.u.), hyperfine splitting parameters (in kHz), and the electric field gradient
q (in a.u.) calculated using naECG wave functions for the first rotational level ðv; JÞ ¼ ð0; 1Þ. The extrapolated nonadiabatic results
(NA) are compared to the Born-Oppenheimer (BO) values [23] and with the results of measurements by Ramsey et al. [24–26]. The NA
values do not include here the uncertainties due to omitted relativistic and QED effects, which can be estimated by the relative factor of
α2 ≈ 5 × 10−5, where α is the fine structure constant.

H2

Basis E cp d ¼ d1=2

512 −1.163 485 167 695 112.393 16 57.643 938 904 75
1024 −1.163 485 172 061 113.889 80 57.643 937 929 23
1536 −1.163 485 172 209 113.904 33 57.643 937 899 30
2048 −1.163 485 172 287 113.911 88 57.643 937 895 69
NA −1.163 485 172 314 0ð1Þa 113.920(8) 57.643 937 891(6)
BO [23] 114.00(12) 57.69(6)
NA − BO −0.08ð12Þ −0.05ð6Þ
Measured [24] 113.904(30) 57.671(24)

HD

Basis E cp cd d1 q

512 −1.165 065 367 519 83.740 0 13.281 98 17.761 872 179 98 0.334 510 892
1024 −1.165 065 376 045 85.446 7 13.146 42 17.761 872 391 72 0.334 493 539
1536 −1.165 065 376 735 85.550 6 13.135 55 17.761 872 423 13 0.334 492 630
2048 −1.165 065 376 858 85.598 6 13.126 23 17.761 872 410 33 0.334 491 813
NA −1.165 065 376 941 65ð3Þa 85.63(4) 13.117(9) 17.761 872 414(13) 0.334 491 0(8)
BO [23] 85.675(60) 13.132(9) 17.773(12) 0.334 7(3)
NA − BO −0.04ð7Þ −0.014ð14Þ −0.012ð12Þ −0.000 2ð3Þ
Measured [25] 85.600(18) 13.122(11) 17.761(12)

D2

Basis E cd d1 q

512 −1.166 896 428 705 8.723 72 2.737 626 131 22 0.335 240 662
1024 −1.166 896 432 071 8.763 77 2.737 626 043 01 0.335 233 684
1536 −1.166 896 432 230 8.765 41 2.737 626 038 04 0.335 232 171
2048 −1.166 896 432 323 8.766 20 2.737 626 037 75 0.335 231 377
NA −1.166 896 432 359 76ð4Þa 8.767 4(10) 2.737 626 037 4(12) 0.335 230 7(7)
BO [23] 8.770(5) 2.739(2) 0.335 35(18)
NA − BO −0.003ð5Þ −0.002ð2Þ −0.000 12ð18Þ
Measured [26] 8.768(3)
aThis is a reference energy obtained from explicitly correlated exponential functions [27–29].
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correct use of the BO potential, as the above mentioned
results [16,17,23] differ from each other due to different
potentials used to average the q parameter. To verify our
result, we used the obtained value of Qd to evaluate the d2
parameter for the HD molecule in a J ¼ 1 state, and we
achieved a perfect agreement with d2 as measured by
Ramsey et al. [25] (see Table II).

Summary.—The deuteron quadrupole moment Qd is
determined with the highest accuracy among all nuclei
in the periodic table [18]. This accurate result can be used
not only in precise atomic and molecular structure calcu-
lations but also can serve as a benchmark for the nuclear
structure theory. Indeed, for a long time, Qd could not be
reproduced by any modern potential model (see, e.g., [3]
and references therein). It was not until very recently that
Filin et al. [32] reported Qd ¼ 0.2854þ38

−17 fm2 obtained
from chiral effective field theory (χEFT), which is in very
good agreement with our result. This agreement opens
the possibility of better understanding the spin-dependent
nuclear structure effects in atomic spectra, particularly
in muonic deuterium hyperfine splitting, where signi-
ficant discrepancies with measurement [35] have been
reported [36].
Apart from the deuteron quadrupole moment, by

accounting for nonadiabatic effects, we obtained all the
other hyperfine constants in very good agreement with
Ramsey’s molecular-beam magnetic resonance measure-
ments (see Table I). However, current theory includes only
the leading relativistic effects. Because the inclusion of
higher order relativistic and QED corrections is certainly
within reach, more accurate measurements are desirable.
This may open new windows for high-precision tests of
fundamental interactions on the molecular scale.
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