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Invoking increasingly higher dimension operators to encode novel UV physics in effective gauge and
gravity theories traditionally means working with increasingly more finicky and difficult expressions. We
find that the duality between color and kinematics provides a powerful tool towards drastic simplification.
Local higher-derivative gauge and gravity operators at four points can be absorbed into simpler higher-
derivative corrections to scalar theories, requiring only a small number of building blocks to generate gauge
and gravity four-point amplitudes to all orders in mass dimension.
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Gravitational quantum scattering amplitudes—the
invariant quantum evolution of what distance means in
space and time, consistent in the classical limit with
Einstein’s general relativity from the Einstein-Hilbert
action (GR)—are much simpler than expected. This sim-
plicity can be traced to the fact that these perturbative
graviton dynamics are completely encoded [1–4] in the
predictions of much simpler gluonic or gauge theories in a
framework called double-copy construction.
It is currently an open question as to whether any four-

dimensional (pointlike) quantum field theory of gravity is
perturbatively finite. The most promising case, maximally
supersymmetric supergravity, is a subject of much current
research exploiting color-kinematics duality and double-
copy construction [3,5–15]. While Yang-Mills (YM) theory
is famously renormalizable in four dimensions, it ceases to
be in higher dimensions, requiring new physics at short
distances. Independent of any aesthetic inclination towards
perturbative finiteness, from an effective field theory
perspective, any new higher energy physics will be encoded
in the low-energy theory as Wilson coefficients of higher
derivative operators, motivating an understanding of what
we can definitively clarify about such predictions to all
orders in mass dimension.
Recent work has shown that at tree level both the

supersymmetric and bosonic open string amplitudes admit
field theory double-copy descriptions [16–21], pulling the
higher-derivative corrections to a putative effective scalar
bicolored theory, encapsulating all order α0 corrections,
called Z theory. Inspired by the existence of Z-theory
amplitudes, here we consider a bootstrap approach, asking

simply what predictions are consistent with unitarity,
double-copy structure, gauge invariance, and locality. We
will see the power of striating Bose-symmetric amplitudes
into a small number of simple color-dual building blocks
allows us to reach all orders of higher derivatives through
elementary considerations.
Focusing on four-point tree level, we will identify all the

single-trace consistent modifications to gauge theory
compatible with supersymmetry in terms of three higher-
derivative scalar building blocks that, when double
copied with Yang-Mills amplitudes, reproduce the open
superstring. We further identify the four additional inde-
pendent higher-derivative vector building blocks (½F3�,
½ðF3Þ2 þ F4�, ½D2F4�, and ½ðDFÞ4�) out of the seven
potential tensor structures [22], required to capture the
bosonic open string. Related gravity corrections are simply
generated by double-copy construction, replacing color
factors with color-dual building blocks.
Adjoint-type building blocks.—We will briefly review

color-kinematic representations in the adjoint at four points.
We refer the interested reader to Ref. [4] for a detailed
treatment. Yang-Mills amplitudes can be expressed in terms
of cubic (trivalent) graphs,

AYM
4 ¼ csnYMs

s
þ ctnYMt

t
þ cunYMu

u
; ð1Þ

where s, t, u are four-point momentum invariants
following an all outgoing convention as s ¼ ðk1 þ k2Þ2,
t ¼ ðk2 þ k3Þ2, and u ¼ −s − t. We can identify each
graph with a distinct ordered list of these invariants, and
can thus label both graph weights cg and nYMg in terms of
each graph’s unique list, e.g., js ¼ jðs; t; uÞ, jt ¼ jðt; s; uÞ,
and ju ¼ jðu; t; sÞ. The color weights cg are simple
dressings of adjoint color generators fabc with repeated
indices summed over, and the kinematic weights nYMg are
Lorentz products between external momenta and polariza-
tion vectors. We emphasize that both the color and
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kinematic weights satisfy Jacobi identities and anti-
symmetry around vertex flips:

cs¼ctþcu; cða;b;cÞ¼−cða;c;bÞ;
nYMs ¼nYMt þnYMu ; nYMða;b;cÞ¼−nYMða;c;bÞ: ð2Þ

As such, this is called a color-dual representation of Yang-
Mills theory. We refer to functions that satisfy both
antisymmetry and Jacobi identities as adjoint-type, and
this representation of Yang-Mills theory as specifically
manifesting an adjoint-type double-copy structure.
Gauge invariance is maintained by the fact that the color

weights, cg, satisfy antisymmetry and Jacobi identities. As
per double-copy construction, we can replace the adjoint-
type color weights with adjoint-type kinematic weights ñg
to generate gravity amplitudes invariant under linearized
diffeomorphism:

AGR
4 ¼ ñYMs nYMs

s
þ ñYMt nYMt

t
þ ñYMu nYMu

u
: ð3Þ

Details of state identification for a variety of (super)-gravity
theories can be found in Ref. [4]. It is important to realize
that the kinematic weights ng and ñg need not come from
the same theory, and that the double-copy construction
promotes any global supersymmetry of the kinematic
weights into a local supersymmetry of the gravitational
amplitude. As Yang-Mills amplitudes and numerators can
be promoted to super Yang-Mills amplitudes in an on-shell
superspace we do not distinguish between Yang-Mills and
super-Yang-Mills numerators here.
It will simplify our discussion to introduce the gauge-

invariant objects called ordered amplitudes. Let us cast the
color weights in Eq. (1) to a minimal basis using Eq. (2), by
eliminating ct in favor of cs and cu. Their coefficients,
labeled AYM, are called ordered or partial amplitudes:

AYM
4 ¼ cs

�
nYMs
s

þ nYMt
t

�
þ cu

�
nYMu
u

−
nYMt
t

�
ð4Þ

¼ csAYMðs; tÞ þ cuAYMðu; tÞ: ð5Þ

As the AYMða; bÞ appear in the full amplitude with indepen-
dent color basis elements, they must each be gauge invariant.
Expressing these ordered amplitudes in a basis of kinematic
weights ng, say by eliminating nu via Eq. (2), demonstrates
that the distinct color orders are intimately related. Indeed, one
can immediately identify the permutation-invariant quantity
stAYMðs; tÞ ¼ ðstuÞAYMðs; tÞ=u. This discussion carries
through for any adjoint-type double-copy amplitude.
We will first be concerned with how we can construct

higher-derivative corrections to Yang-Mills amplitudes by
only modifying the color weights in a manner consistent
with its adjoint-type structure. We begin by recognizing
that the trivial modification of the color weights with

simple products of permutation-invariant scalar combina-
tions remains adjoint-type:

ĉXYg ¼ σX3 σ
Y
2cgα

03Xþ2Y ; ð6Þ

where we introduce (spanning) permutation-invariant
factors σ3 ≡ ðstuÞ, σ2 ≡ ðs2 þ t2 þ u2Þ, and a dimensional
parameter α0 to track mass dimension. This results in an
ordered s-t channel scattering contribution proportional to

AXYðs; tÞ ¼ σX3 σ
Y
2

�
cs
s
þ ct

t

�
¼ σX3 σ

Y
2A

biðs; tÞ: ð7Þ

As any X and Y constitute permutation-invariant scalings of
the ordered amplitude Abiðs; tÞ for bi-adjoint scalars, all
field theory relations are automatically preserved. It should
be apparent from Eq. (7) that for local corrections, one
would restrict to X ≥ 1.
We now introduce the notion of a Jacobi-identity

satisfying composition. Given functional adjoint-type maps
jða; b; cÞ and kða; b; cÞ, we can build an adjoint-type map
nða; b; cÞ as the composition of j and k via

ns ¼ J ðj; kÞ≡ jtkt − juku: ð8Þ

We will use this composition to build a ladder of color-dual
scalar weights starting from one linear in Mandelstam
invariants, the so-called simple scalar numerator:

jssða; b; cÞ ¼ c − b: ð9Þ

This corresponds to a scalar charged in the adjoint mediated
by a massless vector, e.g., with interaction term
fabcAμð∂μϕÞϕ. Note that we may rewrite Eq. (7) in terms
of these simple scalar numerators:

stAXYðs; tÞ ¼ σX3 σ
Y
2 ðcsjsss þ ctjsst þ cujssu Þ: ð10Þ

What happens when we compose the simple scalar with
itself? We find the adjoint-type kinematic weight associated
with the nonlinear sigma model,

jnls ¼ sðu − tÞ ¼ sjsss ∝ J ðjss; jssÞ: ð11Þ

Any further compositions between jss and jnl only differ
from these building blocks by powers of σ2 and σ3—our
ladder of scalar numerators closes under products of
permutation invariants after two rungs.
We are ready to consider compositions involving both

color weights and kinematic weights: namely, our two
distinct scalar numerators. Only J ðc; jssÞ is not redundant
with the amplitudes provided by Eqs. (6) and (10),

ĉss;XYs ¼ σX3 σ
Y
2J ðc; jssÞα01þ3Xþ2Y : ð12Þ
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Such weights result in ordered ðs; tÞ channel scattering
amplitudes proportional to

stAXY
ss ðs; tÞ ¼ σX3 σ

Y
2 ðcsjnls þ ctjnlt þ cujnlu Þ: ð13Þ

Again, locality restricts to X ≥ 1.
With these two building blocks, ĉXY and ĉss;XY , we can

construct any higher-derivative four-point adjoint-type
amplitude that involves only adjoint color and scalar
kinematics. Such amplitudes stAHDðs; tÞ must be com-
pletely permutation invariant and thus can always be
written in terms of a crossing-symmetric adjoint-type
polynomial function of Mandelstam invariants jða; b; cÞ as

stAHDðs; tÞ ¼ csjs þ ctjt þ cuju: ð14Þ

Any such js ¼ jðs; t; uÞ can be written as a superposition of
simple-scalar and NLSM numerators using the following
general decomposition,

js ¼ jsss

� tjs
t−u þ sjt

u−s
s − t

�
þ jnls

� jt
s−u −

js
t−u

s − t

�
; ð15Þ

a fact easily verified by recalling the definitions of
jssðs; t; uÞ ¼ ðu − tÞ and jnlðs; t; uÞ ¼ sðu − tÞ. What is
particularly notable is that their coefficients in Eq. (15)
are each invariant under all permutations S3ðs; t; uÞ by
virtue of the adjoint-type properties of jða; b; cÞ. One might
be concerned about potential poles, but both must in fact be
local expressions. The simplest argument is to realize b ¼ c
is always a zero of the polynomial jða; b; cÞ by virtue of
antisymmetry, and thus (b − c) must be a factor of
jða; b; cÞ. Similarly, as s ¼ t is manifestly a zero of each
numerator in these expressions, the remaining divisor
(s − t) must be a factor of both.
We have not yet exhausted all potential single-trace color

modifications. Namely, we have not yet considered the
possibility that the color-weight information may itself be
permutation invariant, as per the symmetric symbol:
dabcd ¼ ð1=3!ÞPσ∈S3ðb;c;dÞ TrðTaTσ1Tσ2Tσ3Þ. To make an
adjoint-type building block, we simply take the product of
this symbol with any of our two adjoint-type scalar

numerators; due to redundancy between such products,
we need only consider adding to our repertoire the final
building block,

ĉd;XYs ¼ dabcdjnls σX3 σ
Y
2α

0ð2þ3Xþ2YÞ : ð16Þ

These building blocks result in ðs; tÞ ordered amplitudes as

stAXY
d ðs; tÞ ¼ σXþ1

3 σY2d
abcd; ð17Þ

again manifestly satisfying the usual field-theory relations
by construction.
With only three building blocks: ĉXY , ĉss;XY , and ĉd;XY

we have exhausted all four-point single-trace higher-
derivative modifications of color weight, and so we find
the generic form of such corrections to Yang-Mills theory
to be encapsulated by

ĉs ¼
X
i

α0iðaXYĉXYs þ assXYĉ
ss;XY
s þ adXYĉ

d;XY
s Þ; ð18Þ

where the sum over X, Y relevant to mass dimension α0i is
left implicit, and the a parameters encode distinct operator
Wilson coefficients. For examples of scalar and YM
operators through mass dimension four, see Table I. As
the unmodified Yang-Mills weights ensure compatibility
with global SUSY, all local higher-derivative open super-
string corrections to the four point tree-level amplitude,
consistent with adjoint-type representations, will be given
by such ĉ simply as

AYMþHD
4 ¼ ĉsnYMs

s
þ ĉtnYMt

t
þ ĉunYMu

u
: ð19Þ

We will see shortly that our simple color-modified building
blocks for higher-derivative amplitudes are sufficient to
capture the open superstring low-energy expansion
[19,23,24].
We have, thus far, only modified color weights.

Composition between the above scalar weights and
kinematic Yang-Mills weights always satisfies Jacobi
identities, but it is easy to see that the only composition

TABLE I. Scalar and gauge operators corresponding to ĉ through α04. For the bicolored scalar operators we suppress their second color
indices and color factors c̃s. The symmetrized trace operators generate the dabcd symbol as per Ref. [23].

Mass dimension ĉg Scalar operator=c̃s Gauge operator [23]

2 cð0;0;dÞg dabcdð∂μφaφb∂μφcφdÞ symTr½FμνFνρFρσFσμ − 1
4
ðFμνFμνÞ2�

3 cð1;0Þg fdaefebc
zfflfflfflffl}|fflfflfflffl{ct

ð∂μ∂νφa∂νφb∂μφcφdÞ ctfFa
μνDλFbν

ρ ðFcρ
σ DλFdσμ þ Fcμ

σ DλFdσρÞ − 1
2
Fa
μνDλFbμνFc

ρσDλFdρσg
4 cð0;1;dÞg dabcdð∂μ∂ν∂ρφa∂ν∂ρφb∂μφcφdÞ symTr½FμνDλDκFνρDλFρσDκFσμ þ 1

4
FμνDλDκFμνDλFρσDκFρσ �

4 cð1;0;ssÞg ðfabefecd
zfflfflfflffl}|fflfflfflffl{cs

þ fcaefedb
zfflfflfflffl}|fflfflfflffl{cu

Þ×
ð∂μ∂ν∂ρφa∂ρφb∂μ∂νφcφdÞ

ðcs þ cuÞ × ½Fa
μνDλDκFbνρDλFc

ρσDκFdσμ − 1
4
Fa
μνDλDκFbμνDλFc

ρσDκFdρσ �
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with our scalar weights that maintains gauge invariance is
redundant with modifications to color we have already
considered in Eq. (6). What about nonsuperstring operators
that can be applied to gauge theory? The same discussion
carries through, essentially unchanged, by replacing nYM

with other four-point adjoint color-dual vector weights nvec

not compositionally related to nYM (cf. Ref. [22] for all
seven distinct tensor structures) such as the nF

3

numerator
weights identified in Ref. [24]. We will return to this point
shortly, where we make it clear that only four additional
vector building blocks are required to reproduce the open
bosonic string.
Next, let us consider higher-derivative gravitational

operators. We build corrections to Eq. (3) by replacing
either ñYM or nYM or both with higher-derivative modified
vector weights. For greater than half-maximal local super-
symmetry, involving building blocks that contribute to the
open superstring means nYM modified only trivially by
scalar permutation invariants. One can further consider
replacing one or both vector numerators with the type of
non-YM vector weights nvec discussed in the previous
paragraph. Such an example would be the dressings
associated with a single insertion of F3 operators, nF

3

,
which contributes to the bosonic open string, and whose
double copy to gravity was considered in Refs. [24,25].
These are of particular interest because of the possibility of
removing anomalies in associated supergravity theories
[26–28]. Indeed the counterterm considered in these papers
is given by one vector copy in N ¼ 4 super Yang-Mills
theory and one copy nF

3

. Including the remaining nvec

building blocks not appearing in the tree-level open string
amplitudes broadens the scope for supersymmetric counter-
terms. For example, this allows for double-copy construc-
tion of the N ¼ 5 supergravity counterterm of Ref. [29]
whose coefficient was found to be zero via explicit four-
loop calculation in Ref. [30].
String amplitudes at four points.—We are now prepared

to discover our building blocks, resummed over all orders
in α0, in the tree-level four-point open supersymmetric
string amplitude. This can be interpreted as answering a
field theory question of how atoms of field-theory pre-
diction can be made consistent with a stringlike UV
completion. We start by recognizing the open superstring
amplitude as the field theory double copy between Chan-
Paton dressed Z theory [16,18] and supersymmetric Yang-
Mills theory. The four-point amplitude can be represented
in a permutation-invariant color-dual form as

−AOSS ¼ ½stAZðs; tÞ�½stAYMðs; tÞ�
stu

; ð20Þ

where all supersymmetric Ward identities are satisfied by
virtue of operations on the Yang-Mills factor stAYMðs; tÞ,
and AZðs; tÞ is the scalar field-theoretic (s-t) partial
amplitude of Chan-Paton dressed Z-theory encoding all

orders of α0 corrections. We can build ½stAZðs; tÞ� starting
from the bi-ordered doubly stripped partial Z-amplitude
Z1234ðs; uÞ, where the subscript refers to the Chan-Paton
trace ordering, and the parenthetical ordering obeys field-
theory relations,

Z1234ðs; uÞ ¼
α0−1

su
Γð1þ α0sÞΓð1þ α0tÞ

Γð−α0uÞ : ð21Þ

We form the field-theory permutation invariant for this
Chan-Paton ordering by simply taking the product:
suZ1234ðs; uÞ ¼ stZ1234ðs; tÞ. By exploiting monodromy
relations to permute the subscript orderings [31,32], we
can generate the Chan-Paton dressed expression, required
in Eq. (20),

½stAZðs; tÞ� ¼
X

σ∈S3ð2;3;4Þ
Tr½1σ�stZ1σðs; tÞ

¼
X

σ∈S3ð2;3;4Þ
Tr½1σ�

sinðπα0s1;σð3ÞÞ
sinðπα0s1;3Þ

½stZ1234ðs; tÞ�;

ð22Þ
where Tr½ρ� denotes Tr½Taρð1ÞTaρð2ÞTaρð3ÞTaρð4Þ �. The above is
invariant under exchange of any channels, and by express-
ing the Chan-Paton trace factors in terms of cs, ct, cu, and
dabcd, we find the following simple color-dual block-by-
block form for Chan-Paton dressed Z theory

½stAZðs; tÞ� ¼ Γfs;t;ugðZadj þ dabcdZsymÞ ; ð23Þ

where Γfs;t;ug corresponds to a series of higher mass-
dimension combinations of Mandelstam invariants with
coefficients responsible for familiar ζ contributions to the
low-energy expansion. The factor Zadj contains all expres-
sions involving Chan-Paton trace combinations cs, ct, or
cu, and Zsym contains all terms proportional to dabcd. These
are given as follows:

Γfs;t;ug ¼
π2

α0
cscðπα0sÞ cscðπα0tÞ cscðπα0uÞ
Γð−α0sÞΓð−α0tÞΓð−α0uÞ ; ð24Þ

Zsym ¼ 2½sinðπα0sÞ þ sinðπα0tÞ þ sinðπα0uÞ�; ð25Þ

Zadj ¼ cszs þ ctzt þ cuzu: ð26Þ

The zg, which satisfy antisymmetry and Jacobi identities to
ensure the permutation invariance of Zadj, take a particu-
larly simple form, with

zs ¼ zðs; t; uÞ ¼ ½sinðπα0uÞ − sinðπα0tÞ�=3: ð27Þ

In this form, all the coefficients for ĉd;XY may be easily
identified already from the low-energy expansion of Zsym.
The remaining two building blocks only require a little
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teasing out from Zadj. Introducing Sp to denote sinðπα0pÞ,
we can use Eq. (15) to express zg ¼ jssg Zbi þ jnlg Zss, with
permutation invariant Zbi and Zss compactly given by

Zbi ¼ 1

3

sðt − uÞSs þ tðu − sÞSt þ uðs − tÞSu
ðs − tÞðs − uÞðt − uÞ ; ð28Þ

Zss ¼ 1

3

ðu − tÞSs þ ðs − uÞSt þ ðt − sÞSu
ðs − tÞðs − uÞðt − uÞ : ð29Þ

The Zbi terms in Zadj can thus be built from ĉXY , and
similarly the Zss terms from ĉss;XY . We have exposed within
the four-point open superstring amplitude the three unique
Jacobi-identity satisfying modifications to the color
weights of Yang-Mills theory. The Z-theory block can
now be written in terms of

½stAZðs;tÞ�¼ stAbiðs;tÞΓfs;t;ugZbi

þstA00
ss ðs;tÞΓfs;t;ugZssþda1a2a3a4Γfs;t;ugZsym;

ð30Þ
where the higher-derivative expressions through any mass
dimension can be given by simply series expanding about
α0 → 0. The individual aXY coefficients that fix Eq. (19) to
the low-energy expansion of the open superstring through
mass-dimension sixteen are given in an ancillary
Mathematica file (See the ancillary file of the arXiv version
of this Letter.).
We now turn to the open bosonic string amplitude at

four-point tree level. It was shown in Refs. [17,21] that this
amplitude also obeys a field theoretic adjoint-type double-
copy description with Z amplitudes as follows:

ðopen bosonicÞ ¼ ðZ theoryÞ ⊗ ½YMþ ðDFÞ2�; ð31Þ
where ðDFÞ2 is a massive higher-derivative YM theory,
compatible with the usual BCJ relations but in violation of
supersymmetric Ward identities. Only four new (distinct
tensor [22]) building blocks are needed in the vector copy,
along with permutation-invariant objects σ2 and σ3 com-
pactly encoded in the following denominator:

AYMþðDFÞ2
4 − AYM

4

¼ α0AF3

4 þ α02AðF3Þ2þF4

4 þ α03AD2F4

4 þ α04AðDFÞ4

ð1 − α0sÞð1 − α0tÞð1 − α0uÞ : ð32Þ

Explicit expressions for the four additional vector building
blocks are provided in the auxiliary Mathematica file.
Discussion.—We have found that a concrete understand-

ing of all-order higher derivative corrections to YM and GR
consistent with adjoint-type double-copy structure at four
points follows from a few field theory considerations.
These corrections can be obtained through a simple
composition rule that combines color-dual numerators into
more complex numerators with the same algebraic

properties, promoting the color weights to carry higher-
derivative corrections. Introducing three modified color
weights is sufficient to generate the predictions of every
operator contributing to the low energy expansion of the
tree-level open superstring, and we find that just four
additional gauge-invariant building blocks, dressed with
the same modified color factors, are sufficient for the tree-
level bosonic string. It remains an important open question
as to whether all local supergravity operators at four points
have an adjoint-type double-copy structure. This seems
decidable as we have shown that the number of viable
building blocks one needs to consider is quite small.
These considerations only specify the analytic form of

higher-derivative corrections. One may choose to fix their
coefficients by assuming the asymptotic uniqueness of the
Veneziano amplitude (cf. Ref. [33–35]). This discussion
complements and explains results noted in Ref. [36], dem-
onstrating explicitly that the low-energy effective actions of
super and bosonic strings, governed by Z theory, are highly
constrained by the duality between color and kinematics.
Preliminary exploration confirms [37] that the pattern of

identifying color-dual building blocks that admit compo-
sition continues at higher multiplicity, a topic that merits
detailed study. Gaining all-multiplicity control will mean
that, through unitarity methods, one could build relatively
easy to construct higher loop-order scalar integrands that,
via double copy, trivially recycle known gauge and gravity
integrands to their higher-derivative corrections.
It is worth remarking on the color-kinematic structure of

the SUSY-compatible F4 amplitude:

AF4
SUSY ¼ da1a2a3a4stAYMðs; tÞ: ð33Þ

It was observed [24] that the kinematic factor accompany-
ing individual trace terms, stAYMðs; tÞ, does not satisfy the
ðn − 3Þ! relations associated with adjoint color-kinematic
structure. While it is possible to misconstrue this result to
show that F4 is incompatible with color-kinematics duality
in some broad sense, there are two striations of AF4

SUSY

along which we may see color-kinematics duality at play.
First, from a perspective informed by many examples

[38–41] of non-adjoint color-kinematics duality satisfying
representations, we should emphasize that F4 manifests a
completely symmetric color-kinematics duality: both the
color term, dabcd, and the kinematic (Born-Infeld) term,
stAYMðs; tÞ, are invariant under all permutations. This
seemingly trivial duality even has teeth: there is an
associated double-copy construction. Replacing dabcd

with the permutation-invariant kinematic weight
stAYMðs; tÞ generates the gravitational R4 amplitude con-
sistent with maximal local supersymmetry: AR4

SUSY ¼
½stAYMðs; tÞ�2 ¼ stuðAGRÞ.
Second, we learn from Eqs. (16) and (17) that both AF4

and AR4

also manifest a nontrivial adjoint double-copy
structure at four points: A

F4
SUSY

4 ¼ AYM
4 jcg→ðdabcdjnlg Þ, and
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A
R4
SUSY

4 ¼ AYM
4 jcg→ðσ3nYMg Þ. The key to realizing this adjoint-

type color-dual representation is to allow both color factors
and scalar kinematics to conspire within the same weight to
satisfy the adjoint algebraic relations—a lesson driven
home top down by Abelian Z theory [18], and construc-
tively presented here.
Not all effective particles are massless, and not all such

particles are single trace in the adjoint (cf. QCD with
fermions in the fundamental, Einstein-Yang-Mills theory,
and the standard model more generally), yet many admit
color-dual representations [39–43]. It will be fascinating to
see how constructive building blocks can encode higher-
derivative corrections to their predictions. Generalizations
of the above building blocks should be relevant to exploring
higher-derivative corrections to phenomenological effec-
tive field theories [44–47].
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