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We discuss vortex solutions of the Abelian Higgs model in the limit of large winding number n. We
suggest a framework where a topological quantum number n is associated with a ratio of dynamical scales
and a systematic expansion in inverse powers of n is then derived in the spirit of effective field theory. The
general asymptotic form of giant vortices is obtained. For critical coupling the axially symmetric vortices
become integrable in the large-n limit and we present the corresponding analytic solution. The method
provides simple asymptotic formulas for the vortex shape and parameters with accuracy that can be
systematically improved, and can be applied to topological solitons of other models. After including the
next-to-leading terms the approximation works remarkably well down to n ¼ 1.
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Vortices, stringlike solutions in theories with sponta-
neously broken gauge symmetry, were originally discov-
ered in the context of superconductivity [1] and QCD
confinement [2]. They play a crucial role in many physical
concepts from cosmic strings [3] to mirror symmetry and
dualities of supersymmetric models [4]. Giant vortices are
observed experimentally in a variety of quantum condensed
matter systems [5–7]. Corresponding winding numbers
range from n ¼ 4 in mesoscopic superconductors [7],
through n ¼ 60 in Bose-Einstein condensates of cold atoms
[6] and up to n ¼ 365 in superfluid 4He [5]. Thus, it is quite
appealing to identify characteristic features and universal
properties of vortices in the limit of large n, which is a
challenging field theory problem. Though the vortex
equations look deceptively simple, their analytic solution
is not available. Even for critical coupling when hidden
supersymmetry reduces the order of the equations [8] and
even for the lowest winding number n ¼ 1 the solution
cannot be found in a closed form [9] in contrast, for
example, to the apparently more complex case of magnetic
monopoles [10]. Naively, one would expect that finding
analytic solutions of higher topological charge should be a
bigger challenge. In general, only a few such solutions are
known in gauge models (see, e.g., Refs. [11,12]). However,
with increasing winding number vortices reveal some
remarkable properties [13,14], which indicate that in the
large-n limit the solution may actually become simpler.
In this Letter we suggest a framework that enables a
systematic expansion in inverse powers of n and find the

asymptotic form of the axially symmetric giant vortex
solution. Moreover, for critical coupling the field equations
become integrable and we present the corresponding
analytic result.
Since an expansion in inverse powers of a topological

charge may not be overly intuitive, let us first outline its
main idea. When the winding number n grows, the
characteristic size of the vortex has to grow as well to
accommodate the increasing magnetic flux. Assuming a
roughly uniform average distribution of the flux inside the
vortex we get an estimate of its radius

ffiffiffi
n

p
=e, where e is the

gauge charge of the scalar field. At the same time a
characteristic distance of the nonlinear interaction is 1=e.
Thus for large nwe get a scale hierarchy and the expansion
in the corresponding scale ratio is a standard tool of the
effective field theory approach. Since we deal with the
spatially extended classical solutions, it is more convenient
to perform this expansion in coordinate space at the level of
the equations of motion.
We consider the standard Lagrangian for the Abelian

Higgs (Ginzburg-Landau) model of a scalar field with
Abelian charge e, quartic self-coupling λ, and vacuum
expectation value η in two dimensions,

L ¼ −
1

4
FμνFμν þ ðDμϕÞ†Dμϕ −

λ

2
ðjϕj2 − η2Þ2; ð1Þ

where Dμ ¼ ∂μ þ ieAμ. Vortices are topologically non-
trivial solutions of the Euclidean equations of motion. For
critical coupling λ ¼ e2 these reduce to the first-order
Bogomolny equations [8]

ðD1 þ iD2Þϕ ¼ 0;

−F12 þ eðjϕj2 − 1Þ ¼ 0: ð2Þ
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We then study the axially symmetric solutions of winding
number n, which in polar coordinates can be written as
follows: ϕðr; θÞ ¼ fðrÞeinθ, Aθ ¼ −naðrÞ=e, Ar ¼ 0. It is
convenient to work with the rescaled dimensionless quan-
tities eηr → r, f=η → f, λ=e2 → λ so that in the new
variables e ¼ η ¼ 1 and critical coupling corresponds to
λ ¼ 1. Then the Bogomolny equations in terms of the
functions aðrÞ and fðrÞ take the following form:

df
dr

−
n
r
ð1 − aÞf ¼ 0;

da
dr

þ r
n
ðf2 − 1Þ ¼ 0; ð3Þ

with the boundary conditions fð0Þ ¼ að0Þ ¼ 0 and
fð∞Þ ¼ að∞Þ ¼ 1. For a given winding number the
solution carries n quanta of magnetic flux Φ ¼
−
R
F12d2r ¼ 2πn and the energy or string tension

T ¼ −
R
Ld2r ¼ 2πnη2.

For large n the field dynamics is essentially different in
three regions: the core, the boundary layer, and the tail of
the vortex. Below we discuss the specifics of the dynamics
and its description in each region.
The vortex core.—For small r the solution of the field

equations gives fðrÞ ∝ rn. This function is exponentially
suppressed at large n for all r smaller than a critical value,
which can be associated with the core boundary. For such r
the contribution of f can be neglected in the equation for a
and we get aðrÞ ≈ r2=r2n with rn ¼

ffiffiffiffiffiffi
2n

p
, which in turn can

be used in the equation for f. Thus, in the core the
dynamics is described by linearized equations in the
background field

df
dr

−
n
r

�
1 −

r2

r2n

�
f ¼ 0;

da
dr

−
r
n
¼ 0: ð4Þ

Their solutions read

fðrÞ ¼ exp

�
n
2

�
ln

�
r2

r2n

�
−
r2

r2n
þ 1 −

1

n

��
;

aðrÞ ¼ r2

r2n
; ð5Þ

where the form of the integration constant in the first line is
determined by matching conditions explained below. For
rn − r ¼ Oð1Þ we have nð1 − aÞ=r ¼ Oð1Þ and the equa-
tion for f becomes independent of n. Hence, the approxi-
mation Eq. (4) is not applicable anymore, the nonlinear
effects become crucial, and we enter the boundary layer.
Note that the magnetic flux and energy density for Eq. (5)
are approximately 1 and η2, respectively, so that the core

accommodates essentially all the vortex flux and energy
and we can identify rn with the vortex radius.
The boundary layer.—In this region the field dynamics

is ultimately nonlinear. However, it crucially simplifies for
large n. To see this we introduce a new radial coordinate
x ¼ r − rn so that in the boundary layer x ¼ Oð1Þ and
the expansion in x=rn converts into an expansion in
1=

ffiffiffi
n

p
. In the leading order in x Eq. (3) reduces to a

system of n-independent field equations with constant
coefficients

w0 þ γ ¼ 0;

γ0 − 1þ e2w ¼ 0; ð6Þ

where wðxÞ ¼ ln fðrn þ xÞ, γðxÞ ¼ n½aðrn þ xÞ − 1�=rn,
and prime stands for a derivative in x. The system can
be resolved for w, which results in a second-order
equation,

w00 þ 1 − e2w ¼ 0: ð7Þ

This equation has a first integral I ¼ w02 − e2w þ 2w
with I ¼ −1 corresponding to the boundary condition
wð∞Þ ¼ 0. Thus Eq. (6) can be solved in quadratures with
the result

Z
wðxÞ

w0

dw

ðe2w − 2w − 1Þ1=2 ¼ x;

γðxÞ ¼ −½e2wðxÞ − 2wðxÞ − 1�1=2; ð8Þ

where w0 ¼ wð0Þ is the second integration constant. It is
determined by the boundary condition w0ðxÞ ∼ −x at
x → −∞, which ensures that Eq. (8) can be matched to
the core solution. This gives a new transcendental constant

w0 ¼ −0.2997174398…; ð9Þ

which determines a unique asymptotic solution in the
boundary layer. It has the Taylor expansion wðxÞ ¼P∞

m¼0 wmxm, where w1 ¼ ðe2w0 − 2w0 − 1Þ1=2 and the
higher order coefficients can be obtained recursi-
vely. The asymptotic behavior of the function at x → ∞
reads

wðxÞ ∼ w∞e−
ffiffi
2

p
x;

wð−xÞ ∼ −
x2

2
−
1

2
þ…; ð10Þ

where w∞¼w0expf
R
0
w0
½ ffiffiffi

2
p

=ðe2w−2w−1Þ1=2þ1=w�dwg.
By using Eq. (10) it is straightforward to verify that up to
corrections suppressed at large n the boundary layer
solution Eq. (8) coincides with the core solution Eq. (5)
in the matching region 1 ≪ rn − r ≪ rn, where both
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approximations are valid. This is a rather nontrivial result
since Eq. (5) does depend on n.
The vortex tail.—For ðr − rnÞ=rn ¼ Oð1Þ the boundary

layer approximation breaks down and the coordinate
dependence of the field equation coefficients should be
restored. However, the deviation of the fields from the
vacuum configuration is now exponentially small so the
field equations linearize. The solution of the linearized
theory is well known and reads

fðrÞ ∼ 1þ ν

2π
K0ð

ffiffiffi
2

p
rÞ þ…;

aðrÞ ∼ 1þ μ

2π

ffiffiffi
2

p
rK1ð

ffiffiffi
2

p
rÞ þ…; ð11Þ

where KmðzÞ is the mth modified Bessel function. It
describes the field of a pointlike source of scalar charge
ν and magnetic dipole moment μ with ν ¼ μ for critical
coupling. Eqs. (8) and (11) should coincide in the second
matching region 1 ≪ r − rn ≪ rn, which yields

ν ¼ 4w∞
ffiffiffi
π

p
e2

ffiffi
n

p þlnðnÞ=4: ð12Þ

Thus vortex scalar charge and magnetic dipole moment
grow exponentially with the winding number.
Calculation of the higher order terms of the expansion in

1=
ffiffiffi
n

p
is rather straightforward. Writing down the leading

corrections to the asymptotic solutions w and γ as δw=
ffiffiffiffiffiffi
2n

p
and δγ=

ffiffiffiffiffiffi
2n

p
, respectively, we get

δwðxÞ ¼ Cw0ðxÞ þ
Z

x

0

w0ðxÞ
w02ðzÞ

Z
∞

z
w02ðyÞdydz;

δγðxÞ ¼ −xw0ðxÞ − δw0ðxÞ; ð13Þ

where C ¼ R
0
−∞½z=3þ

R∞
z w02ðyÞ=w02ðzÞdy�dz.

Let us now consider noncritical coupling λ ≠ 1. In this
case the order of the field equations cannot be reduced and
they read

1

r
d
dr

�
r
df
dr

�
−
�
λðf2 − 1Þ þ n2

r2
ð1 − aÞ2

�
f ¼ 0;

r
d
dr

�
1

r
da
dr

�
þ 2ð1 − aÞf2 ¼ 0: ð14Þ

Nevertheless, the general structure of the solution is quite
similar to the critical case. Inside the core the contribution
of the scalar potential to Eq. (14) is suppressed by r2=n2.
Hence the core dynamics is not sensitive to λ and the core
solution is given by Eq. (5) up to the value of the
integration constants which do depend on λ through the
matching to the nonlinear boundary layer solution.
In particular the vortex size rn is determined by the
region where the two terms in the square brackets of
Eq. (14) become comparable and the core approximation
breaks down, which gives the leading order result
rn ¼

ffiffiffiffiffiffi
2n

p
=λ1=4. Note that the approximately constant

energy density in the core is now λη2 so that the total
vortex energy in the large-n limit is T ¼ 2π

ffiffiffi
λ

p
nη2. This

agrees with the “wall-vortex” conjecture and numerical
results for very large n of Refs. [13,14]. In the tail
solution, Eq. (11), the argument of K0 gets an additional
factor of

ffiffiffi
λ

p
to account for the variation of the scalar field

mass, while the scalar charge and the magnetic dipole
moment are not equal anymore and have different leading
behavior at n → ∞,

jνj ∼ e2
ffiffi
n

p
λ1=4þ…; jμj ∼ e2

ffiffi
n

p
=λ1=4þ…: ð15Þ

More accurately, these parameters as well as the normali-
zation of the scalar field in the core solution are
determined by matching to the boundary layer solution.
In the boundary layer by expanding in x=rn we get
a system of n-independent equations with constant
coefficients

f00 − ½λðf2 − 1Þ þ γ2�f ¼ 0;

γ00 − 2γf2 ¼ 0; ð16Þ

with the boundary condition γðxÞ ∼ ffiffiffi
λ

p
x at x → −∞. For

λ ¼ 1 the proper solution is given by Eq. (8) and for any
given λ ≠ 1 it can be found numerically.
Finally, we briefly discuss a simpler but quite interest-

ing case of the vortices in Bose-Einstein condensate of a
neutral scalar field. The corresponding vortex equation is
obtained from the first line of Eq. (14) by setting a ¼ 0
and λ ¼ 1 (see, e.g., Ref. [15]). Now the dynamics in the
core of radius rn ¼ n is described by a linear differential
equation, while in the tail region rn þ δ≲ r with δ ∝ n1=3

the derivative term is suppressed and the field equation
becomes algebraic at n → ∞. In contrast to the charged

FIG. 1. The numerical solution of the exact critical vortex
equations for the scalar field fðrÞ (solid lines), the leading
asymptotic solution ewðr−rnÞ (dotted lines), and the next-to-
leading approximation (dashed lines) for different winding
numbers n.
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case the boundary layer does not form and the core and
tail solutions can be polynomially matched over
the interval rn ≲ r≲ rn þ δ. This yields the asymptotic
solution

fðrÞ¼

8>><
>>:
C0JnðrÞ; r≤ rn;ffiffiffiffiffiffiffiffiffiffi
δ=2n

p ½1þðr−rnÞ=δ�; rn <r<rnþδ;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−n2=r2

p
; rnþδ≤ r;

ð17Þ

where JnðrÞ is the nth Bessel function, C0 ¼
ð31=4π1=2=21=2Þ, δ ¼ ð22=3πn1=3=½35=6Γ2ð2=3Þ�Þ, and ΓðzÞ
is the Euler gamma function. The vortex energy now is
T ¼ πη2n2, where a half of the contribution comes from
the vortex tail. Curiously, for η ¼ 1 it is given by the area
of a circle of radius n while the critical vortex energy is
equal to the corresponding circumference. The corrections
to Eq. (17) are given by a series in 1=n1=3 and will be
published elsewhere.
The results of numerical analysis of the large-n approxi-

mation are presented in Figs. 1–5. In Fig. 1 the leading
asymptotic result ewðr−rnÞ and the next-to-leading approxi-
mation which incorporates the Oð1= ffiffiffi

n
p Þ terms are plotted

against numerical solutions of the exact field equations for
fðrÞ with λ ¼ 1, n ¼ 1, 4, 10. In Figs. 2 and 3 the exact
numerical values of fðrnÞ and ν, the natural characteristics
of the vortex solution, are plotted against the asymptotic
leading and next-to-leading results for λ ¼ 1, n ≤ 10. The
expansion reveals an impressive convergence and the next-
to-leading approximation works reasonably well even for
n ¼ 1. For completeness we present the result for the
asymptotic profile of the boundary layer solution for the
scalar field with λ ¼ 1=2; 1; 2 in Fig. 4. The numerical
results for a neutral scalar field vortex with n ¼ 10 are
given in Fig. 5.

To summarize, we have elaborated amethod of expansion
in inverse powers of a topological quantum number. The
method is quite general and can be applied to the study of
topological solitons in a theory where the corresponding
quantum number can be associatedwith a ratio of dynamical
scales, e.g., to the multimonopole solutions in the Yang-
Mills Higgs model, where only the case of vanishing scalar
potential has been solved so far. When applied to axially
symmetric vortices with large winding number n the
expansion is in powers of 1=n1=α with α ¼ 2 for the charged
and α ¼ 3 for the neutral scalar field. In the large-n limit the
complex nonlinear vortex dynamics unravels. In particular,
the field equations become integrable for critical coupling
and reduce to an algebraic one for a neutral Bose-Einstein
condensate. This yields simple asymptotic formulas for the
shape and parameters capturing the main features of the
giant vortices. The accuracy of the asymptotic result can be
systematically improved and already after including the

FIG. 2. The values fðrnÞ obtained from the numerical solution
of the exact critical vortex equations (black dots), the asymptotic
value fðrnÞ ¼ ew0 (dotted line), and the next-to-leading approxi-
mation (solid line) as functions of the winding number n.

FIG. 4. The asymptotic profiles of the scalar field fðrÞ obtained
by numerical solution of the effective vortex equations Eq. (16)
for different values of scalar self-coupling as functions of r − rn.

FIG. 3. Scalar charge or magnetic dipole moment ν of a critical
vortex obtained from the numerical solution of the exact vortex
equations (black dots), the asymptotic result Eq. (12) (dotted
line), and the next-to-leading approximation (solid line) as
functions of the winding number n.
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leading corrections the approximation works remarkably
well all the way down to very low n.
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