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We discuss exploration for isotropic gravitational wave backgrounds around 1 mHz by correlation
analysis, targeting both parity odd and even polarization modes. Even though the space interferometer
LISA alone cannot probe the two modes due to cancellations, the outlook is being changed drastically by
the strong development of other space detectors such as Taiji. In fact, a heliocentric interferometer network
can hold a preferable geometrical symmetry illuminated by a virtual sphere off-center from the Sun. By
utilizing an internal symmetry of data streams, we can optimally decompose the odd and even parity modes
at the correlation analysis. By simultaneously using LISA and Taiji for ten years, our sensitivity to the two
modes could reach ∼10−12 in terms of the normalized energy density.
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Introduction.—Given the high penetration power of
gravitational waves, a stochastic gravitational wave
background could be a very important fossil from the
early Universe for studying an extreme physical state
[1,2]. For cosmology, we would like to primarily search
for the monopole components of a background, since
our observed Universe is nearly isotropic at large
angular scale.
The Stokes V parameter characterizes the asymmetry

between the amplitudes of the right- and left-handed
polarized waves, and is proportional to ΠΩGW in the case
of gravitational waves. Here,ΩGW is the normalized energy
density and Π is the polarization degree (Π ¼ �1 for 100%
right- and left-handed waves). By measuring the V para-
meter, we can probe a parity violation process. Indeed,
there are many cosmological arguments on the circularly
polarized gravitational waves, including their potential
roles for leptogenesis [3] and their production coupled
with Chern-Simon terms during inflation (see, e.g., Ref. [4]
for chromo-natural inflation, [5,6] for its extensions and [7]
for a quantum gravity effect at a Lifshitz point) and
phase transitions [8,9]. For example, depending on model
parameters, due to a gauge field, a nearly 100% polarized
(jΠj ∼ 1) background might be generated above 10−11 Hz
with the amplitude ΩGW ≳ 10−12 [5]. Therefore a detection
of nonvanishing V parameter will have significant impacts
on fundamental physics.
By correlating data streams of noise independent inter-

ferometers, we can directly measure the Stokes V para-
meter [10–12] (see also Refs. [13–15] for CMB analysis).
For example, in the 10–1000 Hz band, using the current
generation ground-based network for a few years, we will
be able to detect the V parameter corresponding to
jΠjΩGW ∼ 10−8 [11].

The band around 0.1m–1 Hz will be explored by space
interferometers. The LISA project has a history of over
20 years [16,17], and its pathfinder mission recently had
impressive success [18]. From its triangle constellation, we
can generate multiple noise-independent data channels [19].
But, unfortunately, LISA is totally insensitive to the isotropic
component of the V parameter, due to the exact cancellation
resulting from the mirror symmetry at the interferometric
plane [20]. With LISA alone, we can merely observe an
anisotropic pattern (e.g., l ¼ 1 and 3 harmonics) of the V
parameter [20,21] (see also Ref. [22]). In fact, we also have
an independent cancellation mechanism related to the
symmetry of the data channels, and even the energy density
ΩGW cannot be measured by correlating LISA’s data streams
(see also Refs. [1,23–25] for estimating ΩGW with the
Sagnac modes). Future space plans such as big bang
observer (BBO) and deci-hertz interferometer gravitational
wave observatory (DECIGO) are designed to use multiple
triangles for correlation analysis. By relatively tilting the
orbits of two triangles, we can measure the even and odd
parity modes down to ΩGW ∼ ΩGWjΠj ∼ 10−16 [26], but
these missions will be available much later than LISA.
However, nowadays, two other projects (TianQin [27]

and Taiji [28]) are actively propelled in the mHz band, both
aiming for operation around 2035, similar to LISA (see
Fig. 1). Therefore, in the mHz band, we now have an
increased chance to study an isotropic background by
correlating LISA and Taiji and TainQin, without being
hampered by the various signal cancellations. This Letter is
the first quantitative study on this issue.
Since observation of a gravitational wave background is an

intrinsically geometrical measurement, it is crucially impor-
tant to see through the underlying symmetry of the network.
From this standpoint, we limit our analysis to a network
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composed by heliocentric interferometers (more specifically
LISA and Taiji), paying special attention to the measurement
of the two parity modes. In fact, a heliocentric network could
have favorable geometrical symmetries that will allow us to
easily make an optimal parity decomposition of a background.
Symmetries of the system.—Here, for a heliocentric

detector network, we discuss two symmetries that are
important for the parity decomposition. To the author’s
best knowledge, the first one has never been covered in the
literature. The second one has been known (see, e.g.,
Ref. [31]), but can play a particularly interesting role when
coupled with the first one.
Global symmetry: LISA has a heliocentric orbit moving

20° behind the Earth. Its three spacecrafts nearly keep a
regular triangle with the arm length L ¼ 2.5 × 106 km [17].
This can be achieved by initially adding small eccentricities
and inclinations to the spacecrafts, and the detector plane is
resultantly inclined to the ecliptic plane by 60°. In Fig. 2,
with the gray belt, we illustrate the envelope of the detector
plane. The middle of the belt is on the ecliptic plane and
corresponds to the orbital line of the barycenter of each
triangle, with the radius RE ¼ 1.5 × 108 km ¼ 1.0 AU.
The triangle is also spinning on the belt for a period of
1 yr (the so called cartwheel rotation).
Taiji moves 20° ahead of the Earth with its arm

length L ¼ 3.0 × 106 km [28] (see also Ref. [32]), and
shares the envelope with LISA (not opposite direction). The
separation between LISA and Taiji is D ¼ 2RE sinð20°Þ ¼
1.0 × 108 km. TianQin has a geocentric orbit, and should
be analyzed separately.

Here, it should be noticed that the gray belt in Fig. 2
contacts with a sphere (hereafter “contact sphere”) of radius
RC ¼ ð ffiffiffi

3
p

=2Þ−1RE ¼ 1.15 AU. Interestingly, the contact
sphere is not “heliocentric,” but its center OC is at 0.58 AU
north of the ecliptic plane. As a sphere is a highly
symmetric object and the search for gravitational wave
backgrounds is a geometrical measurement, it would be
advantageous to view the LISA-Taiji system in relation to
the contact sphere. For example, from its center OC, LISA
and Taiji are separated by

β ¼ 2sin−1½D=ð2RCÞ� ¼ 34.5°: ð1Þ

In order to quantify the relative orientation of LISA and
Taiji interferometers on their detector planes (as discussed
in the next subsection), we introduce a curve connecting the
positions of the two observatories. Considering the existing
symmetry of the system, the primary choice will be the
great circle (geodesic) on the contact sphere, not the orbital
line on the ecliptic plane.

FIG. 2. Upper panel: the gray belt shows the envelope of the
detector planes of the two heliocentric triangle interferome-
ters, LISA and Taiji. The orange line is the orbital line of the
barycenter of each triangle. The green surface is a part of the
virtual sphere of radius RC ¼ 1.15 AU contacting the envelope
belt. From the center OC, the angular separation between LISA
and Taiji is β ¼ 34.5° with the great circle shown with the dashed
curve. The triangles spin on the belt (cartwheel motion). Lower
left panel: the orientation of the detector tensors dA and dE that is
attached to the LISA’s triangle and characterized by the co-
spinning orthonormal basis ðê1; ê2Þ. We define ϕðtÞ for the time
dependent miss-alignment angle relative to the great circle.
Lower right panel: the orientation of the virtual detector tensors
d0
A and d0

E associated with the aligned basis ðê01; ê02Þ. For the
mirror transformation at the plane containing the great circle and
OC, we have ê01 → ê01 and ê02 → −ê02 (accordingly d0

A → d0
A and

d0
E → −d0

E).

FIG. 1. Solid curves: the noise spectra of proposed space
interferometers (LISA, Taiji and TianQin) for single data chan-
nels (A and E types). The green dashed curves are an estima-
tion for the Galactic foreground (based on Ref. [29]) with
observational time Tobs ¼ 1 and 10 yr. The red dashed curve
shows the pessimistic model for extra-Galactic white dwarf con-
fusion noise in [30] with ΩGWðfÞ ≃ 0.95 × 10−12ðf=1 mHzÞ3=4
at 1 mHz–10 mHz.
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Internal symmetry: Next we discuss symmetry within
the triangle of the LISA constellation (essentially the same
for Taiji). We can compose three interferometers at the
three vertexes that are assumed to be equivalent (as in the
standard literature) [19]. However, their data have corre-
lated noises. Using the symmetry of the vertexes, we can
make three noise independent data channels (A, E, T)
as linear combinations of the three original data [19].
The Sagnac-like T channel has a negligible sensitivity to
gravitational waves in the low frequency regime f <
c=ð2πLÞ ∼ 20 mHz (with L ≪ D), and can be used when
measuring the instrumental noise level for the spectral
estimation of a gravitational wave background [1,23–25].
For the correlation analysis, we thus consider using the A
and E channels below, applying the low frequency approxi-
mation. Reflecting the original symmetry of the three
vertexes, their noise spectra are identical [19], but, at the
same time, using their correlation, we cannot measure the
monopole pattern irrespective of the parity modes (see,
e.g., Ref. [20]).
The A and E channels of LISA can be effectively

regarded as responses of two L-shaped interferometers
with orientation difference 45°, as shown in the lower left
panel of Fig. 2 (see, e.g., Ref. [1]). They are attached to
LISA’s spinning triangle. Here, to characterize interfero-
metric responses, we introduce the detector tensors dA and
dE. For the A channel, we have dA ¼ ðê1 ⊗ ê1 − ê2 ⊗
ê2Þ=2 with the unit cospinning vectors ðê1; ê2Þ for its two
arm directions. For the E channel, using the same unit
vectors, we have dE ¼ ðê1 ⊗ ê2 þ ê2 ⊗ ê1Þ=2. The com-
bination ðdA;dEÞ forms the orthogonal basis for the
detector tensors on the instantaneous detector plane.
Note that the orientation of the detector tensors dA and
dE are not aligned with the great circle (given the cartwheel
spin rotation). We put the time-dependent misalignment
angle by ϕðtÞ as shown in Fig. 2.
Now we virtually rotate the basis ðê1; ê2Þ commonly by

the angle ϕðtÞ so that ê01 is parallel to the great circle and
respects the global symmetry of the network. We call
the corresponding virtual detector tensors dA0 ¼ ðê01 ⊗ ê01 −
ê02 ⊗ ê02Þ=2 and dE0 ¼ ðê01 ⊗ ê02 þ ê02 ⊗ ê01Þ=2 (see the
lower right panel in Fig. 2). By tensorial calculations,
we can directly confirm the relation (e.g., Ref. [31])

�
dA0

dE0

�
¼

�
cos 2ϕðtÞ sin 2ϕðtÞ
− sin 2ϕðtÞ cos 2ϕðtÞ

��
dA

dE

�
ð2Þ

with the factor 2 reflecting the spin-2 nature. This means
that, by linearly combining the LISA’s original data channels
A and E in the same manner as Eq. (2), we can actually
obtain the data channels A0 and E0 whose detector tensors are
the virtual ones dA0 and dE0 . The new data set ðA0; E0Þ has
the same information content and noise spectrum as the
original set ðA;EÞ, still without correlation (as easily
confirmed). We can make a similar adjustment for Taiji.

We hereafter call the (virtually generated) aligned
channels by ðAL; ELÞ for the LISA and ðAT; ETÞ for
Taiji. In the next section, we consider the four interdetector
combinations AL-AT , EL-ET , AL-ET , and EL-AT .
We should notice that, for the mirror transformation with

respect to the plane containing the great circle and OC, the
unit vectors are transformed as ê01 → ê01 and ê02 → −ê02 both
for LISA and Taiji (see the lower right panel in Fig. 2).
Then the detector tensors have even parity for ðAL; ATÞ and
odd parity for ðEL; ETÞ (see the definitions of d0

A and d0
E

above). These properties would be essential for the optimal
parity decomposition of a gravitational wave background.
Generally speaking, for two triangle detectors given at

positions pi (i ¼ 1, 2) with associated normal vectors ni,
the above symmetric mirror transformation can be appli-
cable, only if the three vectors p1-p2, n1, and n2 are linearly
dependent. In this sense, the gray envelope in Fig. 2 is
geometrically special.
Gravitational wave background.—Monopole pattern:

We use the Fourier decomposition of the metric perturba-
tion induced by gravitational waves as

hðt;xÞ¼
X
P¼R;L

Z
∞

−∞
df

Z
S2
dnhPðfnÞePðnÞe2πifðn·x−tÞ; ð3Þ

where we adopted the right- and left-handed polarization
bases eR;LðnÞ with the unit propagation vector n. They are
given by the familiar linear polarization bases eþ;× as

eR ¼ ðeþ þ ie×Þ=
ffiffiffi
2

p
; eL ¼ ðeþ − ie×Þ=

ffiffiffi
2

p
: ð4Þ

Our target in this Letter is a stationary and isotropic
gravitational wave background. For the monopole compo-
nents, we can generally write [11,12,20]

� hhRðfnÞhRðf0n0Þ�i
hhLðfnÞhLðf0n0Þ�i

�
¼ δn;n0δf;f0

8π

�
IðfÞ þ VðfÞ
IðfÞ − VðfÞ

�
ð5Þ

with the Stokes parameters ðI; VÞ and the Delta functions. In
Eq. (5), the parameter I represents the total intensity of the
background, while V characterizes the asymmetry between
the right- and left-handed waves, as mentioned earlier. Note
that, for the monopole mode, we do not have the Stokes Q
and U parameters related to linear polarization.
Correlation analysis: In the Fourier space, reaction of

an interferometer a (at x ¼ xa) to gravitational waves is
given by

haðfÞ ¼
X
P¼R;L

Z
dnhPðfnÞðda∶ePÞe2πifn·xa : ð6Þ

Here the colon (∶) represents the double contraction of the
two tensors. Then correlation between two detectors a and
b is given by hhaðfÞhbðf0Þ�i ¼ CabðfÞδf;f0. Using Eqs. (4)
and (5), we have
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CabðfÞ ¼
8π

5
½γIabðfÞIðfÞ þ γVabðfÞVðfÞ�: ð7Þ

Here γXab are the overlap reduction functions (X ¼ I, V)

γXabðfÞ ¼
5

8π

Z
dnKXabðnÞe2πifn·ðxa−xbÞ ð8Þ

with the function KXabðnÞ given by the beam patter
functions [Fþ;×

a ðnÞ≡ da∶eþ;×ðnÞ] as [11,20]

KIab ¼ Fþ
a F

þ
b þ F×

aF×
b ; KVab ¼ −iðFþ

a F×
b − F×

aF
þ
b Þ:
ð9Þ

The overlap reduction functions describe the correlated
responses of two interferometers to isotropic gravitational
wave backgrounds. In Refs. [33,34], for ground based
detectors, a simple analytic expression was derived for
γIab, fully using the symmetry of the earth surface as a
sphere (similarly γVab by Ref. [10]). Quite remarkably, for
the LISA-Taiji system, by virtually introducing the contact
sphere (∼104.5 times larger than the Earth), we can directly
apply the simple expressions for γXab originally provided
for ground-based networks.
Moreover, the combinations made from the virtual data

channels ðAL; ELÞ and ðAT; ETÞ are parity eigenstates for the
mirror transformation mentioned at the end of the previous
section. In concrete terms, AL-AT and EL-ET have even
parity, and AL-ET and EL-AT have odd parity, corresponding
to the special types classified in Ref. [11]. The even ones are
sensitive only to the I mode (blind to V), and the odd ones
are opposite. Accordingly, we can make perfect decom-
positions of the I and V modes, using the present pairs. For
the overlap reduction functions, we can express

ðγIðfÞ; γVðfÞÞ ¼ ðΞ1; 0Þ for AL-AT;

ðγIðfÞ; γVðfÞÞ ¼ ðΞ2; 0Þ for EL-ET;

ðγIðfÞ; γVðfÞÞ ¼ ð0;Ξ3Þ for AL-ET and EL-AT:

Here Ξ1;2;3 depend on the opening angle β and y≡
2πDfc−1 (D: LISA-Taiji distance). For example, we
have [11]

Ξ3ðβ;yÞ¼ sin
β

2

��
−j1þ

7

8
j3

�
þ
�
j1þ

3

8
j3

�
cosβ

�
: ð10Þ

with the spherical Bessel Functions jnðyÞ [11,33]. In Fig. 3,
we present the overlap reduction functions in the low
frequency regime. The period of the wavy profile is
roughly given by c=D ∼ 3 mHz, reflecting the spherical
Bessel functions. The functions decay rapidly ∝

∼
f−1

at f ≫ c=D as the phase coherence is lost by the posi-
tional difference. Below, we use simplified notations such
as γIALET

¼ γIAE.

Detection prospects: Following the standard arguments
on the correlation analysis [33,34], the signal-to-noise
ratios SNRX for two modes (X ¼ I, V) are given by

SNR2
X ¼

�
16π

5

�
2

Tobs

�
2

Z
fmax

fmin

df
ΓXðfÞXðfÞ2
f6SLðfÞSTðfÞ

�
ð11Þ

with ΓI ¼ γ2IAA þ γ2IEE and ΓV ¼ 2γ2VAE due to the optimal
parity decomposition. Here Tobs is the observational period,
ðfmin; fmaxÞ is the frequency range for signal integration,
and SL;TðfÞ are the instrumental noise spectra of the two
detectors (shown in Fig. 1) without including confusion
noise in the present calculations.
For model characterization, we use the relations

½IðfÞ;VðfÞ�¼ρc=ð4π2f3Þ½ΩGWðfÞ;ΠðfÞΩGWðfÞ� with the
critical density ρc. In Fig. 4, we present SNRX (X ¼ I, V)
respectively for the fiducial background ΩGW ¼ 10−11 and

FIG. 3. The overlap reduction functions for the LISA-Taiji
system. We can make a complete separation between I and V
modes by pairing the data channels ðAL; ELÞ and ðAT; ETÞ.

FIG. 4. Signal-to-noise ratios for the I and V mode searches as
functions of the minimum frequency fmin for signal integration
(with fmax ¼ 10 mHz and Tobs ¼ 10 yr). For signal models, we
used ΩGWðfÞ ¼ 10−11 for the symmetric component and
ΠðfÞΩGWðfÞ ¼ 10−11 for the asymmetric one.

PHYSICAL REVIEW LETTERS 125, 251101 (2020)

251101-4



ΠΩGW ¼ 10−11 without f dependence. We put Tobs ¼
10 yr and fmax ¼ 10 mHz, but changed fmin. For the
numerical values in Fig. 4, we have simple scalings

∝
�
ΩGW

10−11

��
Tobs

10 yr

�
1=2

; ∝
�
ΩGWΠ
10−11

��
Tobs

10 yr

�
1=2

for SNRI and SNRV . From these scaling relations,
the detection limits (SNRX ∼ 5) are estimated to be
ΩGW ∼ 10−12 and ΠΩGW ¼ 10−12 (for fmin ¼ 2 mHz
and Tobs ¼ 10 yr).
Interestingly, we can observe stairlike structures in

Fig. 4, reflecting the shapes of the overlap reduction
functions. For example, if we decrease fmin from 3 mHz
to 2 mHz, SNRV and SNRI become 2.4 and 1.7 times
larger. We will also have a significant increase of SNRI by
decreasing fmin further below 2 mHz, in contrast to SNRV .
If we change fmax from 10 mHz to 30 mHzð>c=2πLÞ,

keeping fmin ¼ 2 mHz, the numerical values SNRV in
Eq. (11) change less than 0.012% and 0.2%, respectively,
for ΩGWjΠj ∝ f0 and f1 (with similar corrections for
SNRI). In Eq. (11), this weak dependence on fmax is
due to the factor f−6 and the suppression of the overlap
reduction functions, and justifies our low frequency
approximation for estimating SNRI;V (except for heavily
blue-tilted spectra).
Discussion.—In this Letter, we discussed a correlation

analysis for an isotropic gravitational wave background
with heliocentric interferometers such as the LISA-Taiji
network, paying special attention to the two parity modes
and the underlying geometrical symmetries (see Fig. 2).
Our analysis can be straightforwardly applied to a net-
work composed by more than two heliocentric triangles
detectors.
By correlating LISA and Taiji for ten years, our detection

limit could reach jΠjΩGW ∼ 10−12 that is 4 orders of
magnitude better than the expected level with the current
generation ground-based detector network in the near
future. This is enough sensitivity for examining some
of the theoretical predictions including chromo-natural
inflation discussed in Ref. [5]. Owing to the clear parity
decomposition, we might uncover a parity violation sig-
nature in a cosmological background, even if its energy
density is dominated by astrophysical confusion noise.
As shown in Fig. 4, the estimated SNRI;V depend

interestingly on the minimum frequency fmin for the signal
integration. This frequency will be closely related to the
processing status of the Galactic binary subtraction, and the
observational time Tobs is the key strategic parameter (see
Fig. 1). The foreground subtraction would be a crucial
aspect for the follow-on space projects such as DECIGO
and BBO targeting weak primordial background around
0.1–1 Hz [35,36] (see also Ref. [26] for potential orbital
adjustment for the V parameter search). The correlation

analysis at mHz range would be useful also to examine the
quality of the Galactic binary subtraction.

The author would like to thank H. Omiya for useful
conversations. This work is supported by JSPS Kakenhi
Grant-in-Aid for Scientific Research (No. 17H06358 and
No. 19K03870).

[1] J. D. Romano and N. J. Cornish, Living Rev. Relativity 20, 2
(2017).

[2] C. Caprini and D. G. Figueroa, Classical Quantum Gravity
35, 163001 (2018).

[3] S. H. S. Alexander, M. E. Peskin, and M.M. Sheikh-Jabbari,
Phys. Rev. Lett. 96, 081301 (2006).

[4] P. Adshead and M. Wyman, Phys. Rev. Lett. 108, 261302
(2012).

[5] I. Obata, T. Miura, and J. Soda, Phys. Rev. D 92, 063516
(2015).

[6] A. Maleknejad, M. Sheikh-Jabbari, and J. Soda, Phys. Rep.
528, 161 (2013).

[7] T. Takahashi and J. Soda, Phys. Rev. Lett. 102, 231301
(2009).

[8] T. Kahniashvili, G. Gogoberidze, and B. Ratra, Phys. Rev.
Lett. 95, 151301 (2005).

[9] J. Ellis, M. Fairbairn, M. Lewicki, V. Vaskonen, and A.
Wickens, J. Cosmol. Astropart. Phys. 10 (2020) 032.

[10] N. Seto and A. Taruya, Phys. Rev. Lett. 99, 121101 (2007).
[11] N. Seto and A. Taruya, Phys. Rev. D 77, 103001 (2008).
[12] T. L. Smith and R. Caldwell, Phys. Rev. D 95, 044036

(2017).
[13] A. Lue, L. M. Wang, and M. Kamionkowski, Phys. Rev.

Lett. 83, 1506 (1999).
[14] C. R. Contaldi, J. Magueijo, and L. Smolin, Phys. Rev. Lett.

101, 141101 (2008).
[15] K. Inomata and M. Kamionkowski, Phys. Rev. Lett. 123,

031305 (2019).
[16] P. L. Bender et al., LISA Pre-Phase A Report, 2nd ed. (Max

Planck Institute for Quantum Optics, Garching, 1998).
[17] P. Amaro-Seoane et al., arXiv:1702.00786.
[18] M. Armano et al., Phys. Rev. Lett. 120, 061101 (2018).
[19] T. A. Prince, M. Tinto, S. L. Larson, and J. W. Armstrong,

Phys. Rev. D 66, 122002 (2002).
[20] N. Seto, Phys. Rev. Lett. 97, 151101 (2006).
[21] V. Domcke, J. Garcia-Bellido, M. Peloso, M. Pieroni, A.

Ricciardone, L. Sorbo, and G. Tasinato, J. Cosmol.
Astropart. Phys. 05 (2020) 028.

[22] E. Belgacem and M. Kamionkowski, Phys. Rev. D 102,
023004 (2020).

[23] C. J. Hogan and P. L. Bender, Phys. Rev. D 64, 062002
(2001).

[24] M. Tinto, J. M. Armstrong, and F. B. Estabrook, Classical
Quantum Gravity 18, 4081 (2001).

[25] M. R. Adams and N. J. Cornish, Phys. Rev. D 82, 022002
(2010).

[26] N. Seto, Phys. Rev. D 75, 061302(R) (2007).
[27] J. Luo et al., Classical Quantum Gravity 33, 035010 (2016).
[28] W. R. Hu and Y. L. Wu, Natl. Sci. Rev. 4, 685 (2017).
[29] T. Robson, N. J. Cornish, and C. Liu, Classical Quantum

Gravity 36, 105011 (2019).

PHYSICAL REVIEW LETTERS 125, 251101 (2020)

251101-5

https://doi.org/10.1007/s41114-017-0004-1
https://doi.org/10.1007/s41114-017-0004-1
https://doi.org/10.1088/1361-6382/aac608
https://doi.org/10.1088/1361-6382/aac608
https://doi.org/10.1103/PhysRevLett.96.081301
https://doi.org/10.1103/PhysRevLett.108.261302
https://doi.org/10.1103/PhysRevLett.108.261302
https://doi.org/10.1103/PhysRevD.92.063516
https://doi.org/10.1103/PhysRevD.92.063516
https://doi.org/10.1016/j.physrep.2013.03.003
https://doi.org/10.1016/j.physrep.2013.03.003
https://doi.org/10.1103/PhysRevLett.102.231301
https://doi.org/10.1103/PhysRevLett.102.231301
https://doi.org/10.1103/PhysRevLett.95.151301
https://doi.org/10.1103/PhysRevLett.95.151301
https://doi.org/10.1088/1475-7516/2020/10/032
https://doi.org/10.1103/PhysRevLett.99.121101
https://doi.org/10.1103/PhysRevD.77.103001
https://doi.org/10.1103/PhysRevD.95.044036
https://doi.org/10.1103/PhysRevD.95.044036
https://doi.org/10.1103/PhysRevLett.83.1506
https://doi.org/10.1103/PhysRevLett.83.1506
https://doi.org/10.1103/PhysRevLett.101.141101
https://doi.org/10.1103/PhysRevLett.101.141101
https://doi.org/10.1103/PhysRevLett.123.031305
https://doi.org/10.1103/PhysRevLett.123.031305
https://arXiv.org/abs/1702.00786
https://doi.org/10.1103/PhysRevLett.120.061101
https://doi.org/10.1103/PhysRevD.66.122002
https://doi.org/10.1103/PhysRevLett.97.151101
https://doi.org/10.1088/1475-7516/2020/05/028
https://doi.org/10.1088/1475-7516/2020/05/028
https://doi.org/10.1103/PhysRevD.102.023004
https://doi.org/10.1103/PhysRevD.102.023004
https://doi.org/10.1103/PhysRevD.64.062002
https://doi.org/10.1103/PhysRevD.64.062002
https://doi.org/10.1088/0264-9381/18/19/316
https://doi.org/10.1088/0264-9381/18/19/316
https://doi.org/10.1103/PhysRevD.82.022002
https://doi.org/10.1103/PhysRevD.82.022002
https://doi.org/10.1103/PhysRevD.75.061302
https://doi.org/10.1088/0264-9381/33/3/035010
https://doi.org/10.1093/nsr/nwx116
https://doi.org/10.1088/1361-6382/ab1101
https://doi.org/10.1088/1361-6382/ab1101


[30] A. J. Farmer and E. Phinney, Mon. Not. R. Astron. Soc. 346,
1197 (2003).

[31] N. Seto, Phys. Rev. D 69, 123005 (2004).
[32] N. J. Cornish, Phys. Rev. D 65, 022004 (2001).
[33] E. E. Flanagan, Phys. Rev. D 48, 2389 (1993).

[34] B. Allen and J. D. Romano, Phys. Rev. D 59, 102001
(1999).

[35] C. Cutler and J. Harms, Phys. Rev. D 73, 042001 (2006).
[36] S. Kawamura et al., Classical Quantum Gravity 23, S125

(2006).

PHYSICAL REVIEW LETTERS 125, 251101 (2020)

251101-6

https://doi.org/10.1111/j.1365-2966.2003.07176.x
https://doi.org/10.1111/j.1365-2966.2003.07176.x
https://doi.org/10.1103/PhysRevD.69.123005
https://doi.org/10.1103/PhysRevD.65.022004
https://doi.org/10.1103/PhysRevD.48.2389
https://doi.org/10.1103/PhysRevD.59.102001
https://doi.org/10.1103/PhysRevD.59.102001
https://doi.org/10.1103/PhysRevD.73.042001
https://doi.org/10.1088/0264-9381/23/8/S17
https://doi.org/10.1088/0264-9381/23/8/S17

