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Many-body localization in interacting quantum systems can be cast as a disordered hopping problem on
the underlying Fock-space graph. A crucial feature of the effective Fock-space disorder is that the Fock-
space site energies are strongly correlated—maximally so for sites separated by a finite distance on the
graph. Motivated by this, and to understand the effect of such correlations more fundamentally, we study
Anderson localization on Cayley trees and random regular graphs, with maximally correlated disorder.
Since such correlations suppress short distance fluctuations in the disorder potential, one might naively
suppose they disfavor localization. We find however that there exists an Anderson transition, and indeed
that localization is more robust in the sense that the critical disorder scales with graph connectivity K asffiffiffiffi
K

p
, in marked contrast toK lnK in the uncorrelated case. This scaling is argued to be intimately connected

to the stability of many-body localization. Our analysis centers on an exact recursive formulation for the
local propagators as well as a self-consistent mean-field theory; with results corroborated using exact
diagonalization.
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Disorder-induced localization of noninteracting quantum
particles—the phenomenon of Anderson localization (AL)
—has been one of the most profound discoveries in physics
[1]. Its robustness to interactions in quantum many-body
systems has lately been a major research theme, under
the banner of many-body localization (MBL) [2–5] (see
Refs. [6–8] for reviews and further references). MBL
systems fall outside the paradigm of conventional statistical
mechanics allowing for novel quantum phases, and are thus
of fundamental interest.
Efforts to understand the MBL phase and the accom-

panying MBL transition have ranged from extensive
numerical studies [7,9,10] and phenomenological treat-
ments [11–16] to studying the problem directly on the Fock
space [17–27]. One virtue of the latter is that the problem
can be cast as a disordered hopping problem on the
Fock-space graph, thus offering the prospect of exploiting
techniques and understandings developed for AL.
However, MBL on Fock space is fundamentally different
from conventional AL on high-dimensional graphs, due to
the presence of maximal correlations in the effective
Fock-space disorder: the statistical correlation between
two Fock-space site energies, scaled by their variance,
approaches its maximum value of unity in the thermo-
dynamic limit, for any pair separated by a finite Hamming
distance on the Fock-space graph. This was found to be a
necessary condition for MBL to exist [27].
Motivated by this, here we ask a fundamental question:

what is the fate of AL on random graphs with maximally

correlated disorder? In parallel to the case of Fock-space
disorder, the correlation between the disordered site
energies of any two sites separated by a finite distance
on the graph takes its maximum value in the thermody-
namic limit. In suppressing fluctuations in the site energies,
one might naively suppose these correlations would
strongly favor delocalization; indeed it is not a priori
obvious that a localized phase must exist in such a case.
Nevertheless, not only do we find inexorably a localized
phase and an Anderson transition, but also that the scaling
of the critical disorder with graph connectivity is qualita-
tively different to that for the standard model with uncorre-
lated disorder. These models thus introduce a novel class of
AL problems with intimate connections to the problem of
MBL on Fock space, qualitatively distinct from AL
problems with nonmaximally correlated disorder [28–31].
Concretely, we consider a disordered tight-binding

model on a rooted Cayley tree [as well as on random
regular graphs (RRGs) which are locally treelike]. For
uncorrelated disorder, such models have served as arche-
types for studying a range of phenomena such as locali-
zation transitions, multifractality, and glassy dynamics on
complex high-dimensional graphs [32–48]. The model
Hamiltonian is

H ¼ Γ
X
hi;ji

½jiihjj þ H:c:� þW
X
i

ϵijiihij ð1Þ

in the position basis fjiig, where hi; ji denotes a sum over
nearest neighbour pairs. We denote the branching number
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of the tree by K and the total number of generations in a
finite-sized tree by L; the total number of sites in the tree is
N ∼ KL. The set of correlated random site energies, fϵig, is
fully specified by an N-dimensional joint distribution. To
mimic the case of many-body systems on Fock space
[21,27,49], we take these distributions to be multivariate
Gaussians, N ð0;CÞ, characterized completely by the
covariance matrix C [27]. Taking a cue from disordered
interacting local Hamiltonians, we consider the matrix
elements Cij to depend only on the distance lij between
a pair of sites. To impose the maximally correlated limit, we
consider

Cij ¼ hϵiϵji ¼ fðlij=LÞ; lim
x→0

fðxÞ ¼ 1: ð2Þ

The functional form of f does not qualitatively affect our
results, but for concreteness in numerical calculations we
take Cij ¼ exp½−lij=λL�with λ ¼ 1 [50]. The choice of the
argument of f is motivated by the form of correlations in
the Fock-space disorder of disordered many-body systems;
for p-local Hamiltonians the analogous f was shown to be
a pth-order polynomial of lij= lnNH, NH being the Fock-
space dimension [27].
Our analysis centers on the local Feenberg self-energy

SiðωÞ≡ XiðωÞ − iΔiðωÞ, defined via the local pro-
pagator as GiðωÞ ¼ ½ωþ − ϵi − SiðωÞ�−1 with ωþ ¼ ωþ
iη (η ¼ 0þ). We focus on the imaginary part of the
self-energy, ΔiðωÞ, as it serves as a probabilistic order
parameter for a localization transition. Physically, ΔiðωÞ
gives the rate of loss of probability from site i into states of
energy ω. In a delocalized phase ΔiðωÞ is finite, whereas in
a localized phase it vanishes ∝ η [with yiðωÞ ¼ ΔiðωÞ=η
finite], both with unit probability. These characteristics of
ΔiðωÞ have long been used successfully to understand
Anderson transitions [1,32,52–55]; and, more recently,
MBL transitions on Fock space [21,24,27].
We focus on the self-energy of the root site (i ¼ 0) of the

rooted Cayley tree. S0ðωÞ is given exactly by

S0ðωÞ ¼ Γ2
X

i1∈N½0�
½ωþ −Wϵi1 − Sð0Þi1

�−1; ð3Þ

with the sum over all sites in the first generation, and Sð0Þi1
the self-energy of site i1 with the root site removed (with
N½in� denoting the set of neighbours of in on generation
nþ 1). One could in principle now approximate the
self-energy on the right-hand side of Eq. (3) by a typical
Styp, and obtain the distribution of S0 self-consistently
[21,24,27]. Here however we go far beyond such a treat-
ment, addressing Eq. (3) to arbitrarily high orders via an
exact recursive method. We first sketch the formulation,
focusing on the localized phase, in particular its stability
and self-consistency; whence the quantity of interest is
y0ðωÞ.

From Eq. (3), y0ðωÞ can be expressed as

y0¼
X

i1∈N½0�

Γ2

Ω2
i1

½1þyð0Þi1
�; Ωi1 ¼ω−Wϵi1 −Xð0Þ

i1
: ð4Þ

This is a recursion relation, which can be iterated as

y0¼
X

i1∈N½0�

Γ2

Ω2
i1

�
1þ

X
i2∈N½i1�

Γ2

Ω2
i2

�
1þ

X
i3∈N½i2�

Γ2

Ω2
i3

½1þ���: ð5Þ

In Eq. (5), for any site in on generation n of the tree,
Ωin ¼ ω −Wϵin − Xðin−1Þ

in
ðωÞ, with Xðin−1Þ

in
the real part of

the self-energy of site in with its (unique) neighbor in−1 on
the previous generation removed. As for the imaginary part
of the self-energy, a recursion relation for the real part can
also be derived from Eq. (3). This leads to a recursion
relation for Ωin,

Ωin ¼ ω −Wϵin −
X

inþ1∈N½in�

Γ2

Ω2
inþ1

; ð6Þ

with the boundary conditionΩiL ¼ ω −WϵiL for a tree with
L generations. Equations (5) and (6) comprise the complete
set of recursion relations required to compute y0ðωÞ to all
orders. We now make key conceptual points about the
stability of the localized phase or lack thereof, and describe
our results.
Note that by evaluating y0ðωÞ using Eq. (5) for

many disorder realizations, one can generate its entire
distribution Py0 , and also compute its typical value via
ln y0;typ ¼

R
dy0Py0ðy0Þ ln y0. A stable localized phase is

indicated by y0;typ taking a finite value independent of
system size; whereas the delocalized phase is identified via
a systematic growth of y0;typ with system size, such that it
diverges in the thermodynamic limit. The disorder strength
separating these two behaviors, if present, is the critical
disorder. Numerical results for the localization phase
diagram so obtained for a K ¼ 2 Cayley tree with max-
imally correlated disorder are shown in Fig. 1. Considering
the band center ω ¼ 0 as an example [panel (a)], ln y0;typ is
independent of L for W > Wc whereas it diverges with L
for W < Wc; thus showing that a localization transition is
indeed present in the model. The phase diagram similarly
obtained in the entire ω −W plane is given in Fig. 1(b),
which shows the presence of mobility edges in the
spectrum. Finally, in Fig. 1(c), the distribution of y0
is shown for a representative disorder in the localized
phase, and shows excellent agreement with a Lévy
distribution characteristic of a localized phase, Py0ðy0Þ ¼ffiffiffiffiffiffiffiffi
κ=π

p
y−3=20 e−κ=y0 with scale parameter κ.

The stability of the localized phase can also be under-
stood as the convergence of the recursion relation in
Eq. (5). The series for y0 can be organized as

PHYSICAL REVIEW LETTERS 125, 250402 (2020)

250402-2



y0 ¼
X∞
l¼1

ϕl;

ϕl ¼
X

i1∈N½0�

Γ2

Ω2
i1

X
i2∈N½i1�

Γ2

Ω2
i2

� � �
X

il∈N½il−1�

Γ2

Ω2
il

; ð7Þ

with ϕl the total contribution to y0 from all sites on the lth
generation. Diagrammatically, it is the total contribution to
y0 from all Kl paths of length 2l, each of which goes from
the root site to a unique site in the lth generation and
retraces itself back to the root site [56]. For the series in
Eq. (4) to converge in the thermodynamic limit, ϕl must
decrease sufficiently fast with increasing l. This suggests
that the distributions Pϕl

of ϕl, should evolve with l in a
qualitatively different manner in the delocalized and
localized phases. Calculating Pϕl

shows that this is indeed
so, as shown in Figs. 2(a)–2(b). For strong disorder
(localized phase), the vast bulk of the distribution shifts
rapidly to smaller values with increasing l, while in the
delocalized phase the support of the Pϕl

moves to larger
values with increasing l. This is itself indicative of the
convergence of the series in the localized phase and
otherwise in the delocalized. To further quantify the

convergence, one can define y½l�0 ≡P
l
n¼1 ϕn and study

its typical value, y½l�0;typ, as a function of l and W.
Representative results at ω ¼ 0 are shown in Fig. 2(c).

For weak disorder, y½l�0;typ grows rapidly with l, whereas for
strong disorder it saturates to its converged value in the
localized phase; again clearly showing the presence of a
localization transition.
Two further remarks should be made. First, the recursive

formulation also treats the real parts of all self-energies
exactly. One can however make the simplifying approxi-
mation of neglecting them—Anderson’s “upper limit

approximation” [1,32]. For the tree with correlated disorder
this approximation again predicts the presence of a tran-
sition, albeit naturally at a higher Wc [51]. Second, the
terms appearing in the series in Eq. (7) but with Xðin−1Þ

in
¼ 0

(i.e., Ωin ≡ ω −Wϵin ) are precisely those appearing in the
forward approximation [20]. By including the contribution
of nonlocal propagators to the local propagator in an exact,
fully renormalized fashion, the recursive formulation is a
significant technical advance.

(a)

(b) (c)

FIG. 2. Convergence of the series for y0 [Eq. (7)] for the K ¼ 2
Cayley tree. (a),(b) Distributions Pϕl

in delocalized and localized
phases, for different l; evolution with l is qualitatively different in
the two phases. Dashed line for localized phase shows Lévy tail,
slope − 3

2
. (c) The typical value of the series summed to l terms

(normalized by the l ¼ 1 value) vs l. Results for L ¼ 12, ω ¼ 0,
and 5 × 104 realizations. Red lines show W values lying in the
critical regime shown in Fig. 1(a).

(a) (b) (c)

FIG. 1. For a K ¼ 2 rooted Cayley tree, numerical results from the exact recursion method. (a) The typical y0;typ at ω ¼ 0, vs disorder
strength W (with Γ≡ 1) for different total generation numbers L. For W > Wc, y0;typ is independent of L; while for W < Wc it grows
with L, indicating a divergence in the thermodynamic limit. The criticalWc subject to error bars is the grey shaded region, estimated by
positing y0;typ ¼ Aþ BNβ; β ¼ 0 implies a localized phase and its deviation from 0 the onset of delocalization. (b) Color map of β as a
function of ðW;ωÞ. The blue line shows the contour β ¼ 0.05 as an estimate of the critical line (mobility edges); the value is chosen in
accordance with the error bars in β. For ω ¼ 0 our best estimate isWcðω ¼ 0Þ ≃ 6.8. (c) Distribution of y½L�0 in the localized phase. Data
are well converged for different L, and in excellent agreement with a Lévy distribution,

ffiffiffiffiffiffiffiffi
κ=π

p
y−3=20 e−κ=y0 (with κ ¼ 3.1 × 10−2), shown

by the grey shaded region. Statistics are obtained over 5 × 104 disorder realizations.
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Correlations in the ϵi’s preclude an exact analytic
solution for the distribution of y0 from Eq. (5). One can
nevertheless perform a self-consistent mean-field calcula-
tion analytically at leading order in the renormalized
perturbation series [21,24,27] (here illustrated for
ω ¼ 0). Here y0 depends only on the site energies of its
neighbors, fi1g. Since l0i1 ¼ 1, the maximally correlated
limit implies the conditional distribution Pðϵi1 jϵ0Þ ¼
δðϵi1 − ϵ0Þ in the thermodynamic limit. The distribution
of y0 can thus be simply calculated as Py0ðy0Þ ¼R
dϵ0Pðϵ0Þδðy0 − KΓ2ð1þ y0;typÞ=½W2ϵ20�Þ. Since the

univariate distribution Pðϵ0Þ is a standard normal, this
yields Py0ðy0; y0;typÞ ¼

ffiffiffiffiffiffiffiffi
κ=π

p
e−κ=y0y−3=20 where κ ¼

Kð1þ y0;typÞΓ2=2W2. Remarkably and reassuringly, the
distribution indeed has the Lévy form, just as obtained
numerically by summing the entire series [Fig. 1(c)].
Self-consistency can now be imposed by requiring

ln y0;typ ¼
R
dy0Py0ðy0; y0;typÞ ln y0; the solution of which

is y0;typ ¼ 2eγKΓ2ðW2 − 2eγKΓ2Þ−1, with γ the Euler-
Mascheroni constant. Since y0 is necessarily non-negative,
self-consistency of the localized phase requires W ≥ Wc,
with [57]

Wc ¼
ffiffiffi
2

p
eγ=2Γ

ffiffiffiffi
K

p
: ð8Þ

This Wc ∝
ffiffiffiffi
K

p
scaling is qualitatively different from that

arising for uncorrelated disorder, where Wc ∝ K lnK [32];
and stems intrinsically from the maximal correlations in the
disorder.
We turn now to results arising for RRGs, via exact

diagonalization (ED) of tight-binding Hamiltonians Eq. (1)
with maximally correlated disorder Eq. (2). Our motivation
here is twofold. First, while results above were for a rooted
Cayley tree, we expect them to hold qualitatively for other
random graphs. Second, it is important to corroborate the
results with other independent measures of localization.
Cayley trees are not moreover readily amendable to ED,
since a finite fraction of sites live on the boundary; this
issue is sidestepped by considering RRGs, which are
locally treelike but contain long loops.
In the following we consider RRGs with a coordination

number Z ¼ K þ 1 ¼ 3; denoting the total number of sites
in the RRG by N. In accordance with the form of the
covariance matrix for the Cayley tree, we take
Cij ¼ exp½−lij lnK= lnN�. The quantities studied will be
the level spacing ratios, andΔi computed directly. We focus
on the middle of the spectrum (ω ¼ 0) and consider 50–100
eigenstates therein.
For an ordered set of eigenvalues fEng, the level

spacing ratio is rn ¼ min½sn; snþ1�=max½sn; snþ1� with
sn ¼ En − En−1. In an ergodic phase the distribution of
rn follows the Wigner-Dyson surmise with mean r̄ ≃ 0.53,
while in a localized phase the distribution is Poisson with
r̄ ≃ 0.386. Results for r̄ vs W are shown in Fig. 3(a), and

show clearly a localization transition. A scaling collapse of
the data for various N onto a common function of
ðW −WcÞN1=ν yields a critical disorder strength of
Wc ≃ 6.8 and ν ≃ 4.6. Note that the Wc estimated is
remarkably close to that obtained above numerically for
the K ¼ 2 Cayley tree.
From the set of exact eigenvalues fEng and eigenstates

fjψnig, ΔiðωÞ can be computed as

ΔiðωÞ¼ Im½G−1
i ðωÞ�−η; Gi¼

X
n

jhψnjiij2
ωþ iη−En

: ð9Þ

As Δ is finite with unit probability in the delocalized phase,
Δtyp should converge to a finite value with increasing N;
while in a localized phase Δ ∝ η vanishes with unit
probability, so Δtyp should decrease with N. This behavior
is indeed found, see Fig. 3(b). To estimate numerically the
critical Wc, we posit Δtyp ¼ Δtyp;N→∞ þ a=Nβ and extra-
polate the data to the thermodynamic limit. As shown in
Fig. 3(b), the vanishing of Δtyp;N→∞ gives a Wc consistent
with that obtained from level statistics. In the localized
phase, the distribution of y ¼ Δ=η is again in very good

(a) (b)

(c) (d)

FIG. 3. ED results for a K ¼ 2 RRG with maximally correlated
disorder. (a) Mean level spacing ratio vs W shows a crossing
for different N. Data collapse onto a common function of
ðW −WcÞN1=ν yields Wc ≃ 6.8 and ν ≃ 4.6 (inset). (b) Typical
value Δtypðω ¼ 0Þ computed exactly from Eq. (9). In the
delocalized [localized] phase it is independent of [decays with]
N. Dashed line shows extrapolation to N → ∞. Grey shaded
regions in (a), (b) denote the estimated critical region. (c),(d)
Distributions of Δ and y ¼ Δ=η in the delocalized and localized
phases respectively. Grey shaded regions show best fits to log-
normal and Lévy distributions, respectively.
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agreement with a Lévy distribution [see Fig. 3(d)]. In the
delocalized phase by contrast, Δ is qualitatively different,
and appears to be log-normally distributed [Fig. 3(c)].
As above, whether for a Cayley tree or RRG, we find a

one-parameter Lévy distribution for y ¼ Δ=η in the local-
ized phase. Importantly, it is thus universal: distributions
for different W > Wc can be collapsed onto a universal
form by scaling the self-energy as y=ytyp [51]. Further, the
distribution can be directly connected to that of wave
function amplitudes, the moments of which [via general-
ized inverse participation ratios (IPRs)] probe the diver-
gence of the localization length, ξ, asW → Wc [51]. Within
our mean-field theory, we find ξ ∼ ðW −WcÞ−1 with an
exponent of 1.
We turn now to the K → ∞ limit. For any one-body

problem to remain well defined in this limit, the hopping
must be rescaled as Γ ¼ Γ�=

ffiffiffiffi
K

p
[58]. The mean-field

theory then yields a finite critical Wc ¼
ffiffiffi
2

p
eγ=2Γ�; in stark

contrast to the case of uncorrelated disorder where, despite
rescaling Γ, Wc=Γ� ∝

ffiffiffiffi
K

p
lnK thus precludes localization

asK → ∞. For MBL on Fock space, in a system containing
L real-space sites, the effective connectivity on the
Fock-space graph scales as K ∼ L, and the effective
Fock-space disorder as WFS ∼

ffiffiffiffi
L

p
Wt [with Wt ∼Oð1Þ]

[21,27]. Rescaling all energies by
ffiffiffiffi
L

p
, as required to attain

a well-defined thermodynamic limit L → ∞, again leads
[27] to a finite criticalWt;c, in direct parallel to the K → ∞
limit of the present problem. The existence of a MBL phase
thus provides an indirect but complementary argument for
the

ffiffiffiffi
K

p
scaling of Wc.

In summary, we have studied AL on Cayley trees and
RRGs with maximally correlated on-site disorder, mirror-
ing the effective Fock-space disorder of MBL systems.
While such correlations might be thought to disfavor
localization by suppressing site-energy fluctuations, we
find both that an Anderson transition is present, and that
scaling of the critical disorder with graph connectivity is
qualitatively different from that of uncorrelated disorder,
with correlations favoring localization. Our results address
a new class of AL problems, and shed light on the crucial
role played by correlations in Fock-space disorder in
stabilizing MBL. Many questions arise as to what further
aspects of MBL can be captured by AL problems with
maximally correlated disorder. One such is the multifractal
character of wave functions, and its possible connection to
the anomalous statistics of MBL wave functions on Fock
space; and our preliminary results indeed suggest the
presence of multifractal eigenstates on RRGs. Looking
further afield, understanding the effect of maximal corre-
lations on glassy dynamics on such graphs is also imma-
nently important.
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