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We experimentally study universal nonequilibrium dynamics of two-dimensional atomic Bose gases
quenched from repulsive to attractive interactions. We observe the manifestation of modulational instability
that, instead of causing collapse, fragments a large two-dimensional superfluid into multiple wave packets
universally around a threshold atom number necessary for the formation of Townes solitons. We confirm
that the density distributions of quench-induced solitary waves are in excellent agreement with the
stationary Townes profiles. Furthermore, our density measurements in the space and time domain reveal
detailed information about this dynamical process, from the hyperbolic growth of density waves, the
formation of solitons, to the subsequent collision and collapse dynamics, demonstrating multiple universal
behaviors in an attractive many-body system in association with the formation of a quasistationary state.
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Predicting the evolution of multidimensional nonlinear
systems under attractive interactions is a challenging task,
owing to the instability to collapse [1–3]. Bright solitons
are remarkable stationary states, established when the
self-focusing effect responsible for collapse is exactly
compensated by wave dispersion [4,5]. In uniform two-
dimensional (2D) systems with standard cubic interactions,
such as Kerr medium [3,6] or matter waves formed by
weakly interacting 2D Bose gases [7,8], however, such
intricate balance cannot be fulfilled except when a wave
packet possesses a critical norm (or total atom number)
known as the Townes threshold and a specific waveform
known as the Townes profile [6,9,10]—only at which
bright solitons can form. A Townes soliton is predicted
to be unstable as long as the norm deviates from the
Townes threshold [3,9]. Despite extensive interest in
multidimensional bright solitons [9–13], including recent
advancements on 2D spatial solitons in various nonlinear
optics settings [3,11,14], an experimental realization
and characterization of Townes solitons has remained
elusive.
In soliton formation dynamics, modulational instability

(MI) is a ubiquitous mechanism that causes the amplifi-
cation of initial wave disturbances and fragmentation into
solitary waves [1,15–17]. In one-dimensional (1D) sys-
tems, MI is responsible for the formation of stable soliton
trains, for example, in nonlinear fiber optics [18–20], in 1D
Bose gases [16,17,21,22], or in Bose-Einstein condensates
in optical lattices [23–25]. In higher spatial dimensions,
transverse MI and wave fragmentation were studied in
various types of bulk nonlinear optical media [14,26,27].
However, detailed dynamics of multidimensional MI and
its possible connection to the universal formation of a

quasistationary state, the unstable Townes solitons, have
not been clearly demonstrated.
Using ultracold 2D Bose gases, we show that universal

MI dynamics supports the critical formation of Townes
solitons. Starting with a 2D superfluid of an initial density
ni and quenched to an attractive interaction gf < 0,
we show that MI causes collective modes with a
wave number around kMI ¼ π=ξ associated with the inter-
action length ξ ¼ π=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nijgfj

p
to grow predominantly

[28–30], fragmenting the superfluid as illustrated in
Fig. 1(a). Intriguingly, the characteristic atom number in
each wave packet ∼niξ2 ¼ π2=2jgfj well approaches the
Townes threshold Nth ¼ 5.85=jgfj [10], thus opening up a
pathway for Townes soliton formation. This relation should
apply universally for any ni and gf provided no other length
scales set in. We note that, due to the scaling symmetry in
2D, a Townes soliton forms under a scale-invariant profile
[6] and MI can set the physical length scale ξ that depends
only on the product of ni and jgfj.
In this Letter, we report the observation of universal

dynamics and Townes soliton formation in quenched 2D
Bose gases. We observe MI that breaks up an otherwise
large 2D sample into fragments universally around the
Townes threshold. We clearly identify solitary waves
whose density distributions agree well with the Townes
profiles—the stationary state solution of the 2D
nonlinear Schrödinger equation (NLSE) [6,10]. Our
measurement further reveals universal solitary wave
dynamics governed by the MI timescale and a universal
scaling behavior in the density power spectra, allowing
us to clearly identify a distinct time period for the
unstable growth of density waves (while conserving
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total atom number), followed by a short era of wave
collapse and soliton formation.
We begin the experiment with a uniform 2D Bose gas

deep in the superfluid regime [31], which is formed by
N ≈ 1.5 × 104 cesium atoms trapped inside a quasi-2D box
potential. The atomic surface density is ni ≈ 5=μm2 and
the surface area is controlled by a wall-like potential
that is removed following the interaction quench [31].
The tight vertical (z) confinement of the box freezes all
atoms in the harmonic ground state along z axis. The trap
vibrational level spacing (ωz ¼ 2π × 1750 Hz) is more
than 2 orders of magnitude larger than the attractive
interaction energy studied, ensuring that the observed wave
dynamics is effectively 2D [38]. The interaction strength
g ¼ ffiffiffiffiffiffi

8π
p

a=lz is controlled by the tunable s-wave scattering
length a via a magnetic Feshbach resonance [39],
and lz ¼ 208 nm is the vertical harmonic oscillator length;
g ¼ gi ¼ 0.115 is the initial interaction strength.

We perform an interaction quench (in 1 ms) to various
g ¼ gf in samples with a large surface area A ≈ ð60 μmÞ2.
Following a variable hold time τ, we perform single-shot
absorption imaging to record the sample density distribu-
tion as shown in Fig. 1(b). Around 30 samples are imaged
for ensemble analyses. In a short hold time, we observe
density blobs randomly clumping up throughout a sample.
The sizes of the blobs are smaller with larger jgfj. At a
longer hold time, τ ≥ 30 ms, the number of observed blobs
reduces, becoming more isolated, although the mean size
and atom number of the surviving blobs remain nearly
unchanged for τ ≤ 200 ms (see Fig. S2 in Ref. [31]). The
same quench protocol applied to samples in a three-
dimensional trap (ωz ≈ 2π × 100 Hz with a weak radial
trap frequency ωr ≈ 2π × 13 Hz) results in no observed
density blobs.
We characterize these isolated blobs (solitary waves) and

compare their atom number with the Townes threshold. We
approximate their density profiles by 2D Gaussians [10]
and fit the mean size σ and atom number N̄a [31]. Within
the interaction range studied, −0.004 ≥ gf ≥ −0.034, in
Fig. 1(c) we find that all rescaled atom numbers N̄ajgfj fall
around Nthjgfj ¼ 5.85, giving a mean N̄ajgfj ¼ 6ð1Þ.
Interestingly, the standard deviation of the atom number
δNa scales with gf accordingly, giving a mean fluctuation

δNajgfj ¼ 3.2ð5Þ ∼ 0.5N̄ajgfj. We believe that the number
variation around the threshold results from the energy-time
uncertainty relation, as we later show that these blobs form
in a timescale ∼γ−1, where ℏγ ¼ ℏ2nijgfj=m is the inter-
action energy, m is the atomic mass, and ℏ is the reduced
Planck constant. Moreover, the size of these solitary waves
also agrees with the prediction σ ≈ ξ in Fig. 1(d), indicating
that MI provides the length scale for the formation of blobs.
A size discrepancy at γ ≈ 2π × 1.2 Hz (gf ¼ −0.004) could
likely be attributed to the influence of a very weak
horizontal corrugation in the vertical confining potential.
To confirm that the quench-induced solitary waves

indeed form Townes solitons, we compare their
density distributions with the scale-invariant, isotropic

Townes profile nðrÞ ¼ α2jϕðαrÞj2=ð2jgfjÞ, where α ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n0jgfj=jϕð0Þj2

q
is a scale factor. Given the peak density

n0, the characteristic size and density profile of a Townes
soliton are uniquely determined. Here, the radial function
ϕðr̃Þ is the stationary solution of the scale-invariant 2D
NLSE [6,10]. The stationary profile ϕðr̃Þ has been evalu-
ated numerically [6], giving jϕð0Þj ≈ 2.207, and the normR jϕðr̃Þj2dr̃ ≈ 11.7 sets the Townes threshold.
Since MI sets the length scale during the soliton

formation process, α ∼ ξ−1, the peak density of most
solitons should be comparable to the initial sample density
n0 ≈ ni. Figure 2 plots three isolated solitary waves of
similar peak density that are randomly chosen from
quenched samples (gf ¼ −0.034) at a long hold time
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FIG. 1. Universal solitary wave formation in quenched 2D Bose
gases. (a) Interaction quench-induced MI fragments a 2D gas
(blue shaded square) into wave packets of a characteristic size ξ
(dashed circles) that contains atom number ∼niξ2 approaching
the Townes threshold Nth. The 2D gas is confined in a single node
of a repulsive standing-wave potential (green shaded ovals),
evolves for a hold time τ, and is imaged via a microscope
objective (blue hemisphere) [31]. (b) Single-shot images of
samples quenched to the indicated interaction gf (in each row)
and held for the labeled time τ (in each column). Solitary waves
(isolated density blobs) become visible at τ ≥ 30 ms. (c) Scaled
mean atom number in a solitary wave N̄ajgfj. Solid line marks the
universal threshold Nthjgfj ¼ 5.85. (d) Mean size σ versus
interaction frequency γ. Solid line is the interaction length ξ.
All data points in (c) and (d) are evaluated at τ ¼ 42 ∼ 50 ms
except for those of gf ¼ −0.004 which are evaluated at
τ ¼ 150 ∼ 200 ms. Error bars are standard errors. Uncertainties
in gf are smaller than the size of symbols [31].
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τ ¼ 100 ms. Their individual density distributions, as well
as the averaged radial density profile, indeed agree fairly
well with the expected Townes profiles with no fitting
parameters. More agreement with the Townes profiles is
discussed in Ref. [31], where a single array of well-isolated
solitons can form in an elongated sample following an
interaction quench. Our observation confirms that Townes
solitons can prevail from MI and explains why many
randomly formed solitary waves, as observed in Fig. 1,
are long-lived. We note that, in the absence of MI and
fragmentation, a wave was observed to collapse only
partially to a Townes profile [3].
We now turn to study the universal dynamics during the

soliton formation process. We focus on the time evolution
of density power spectrum [40] Sðk; τÞ ¼ hjnðk; τÞj2i=N in
the spatial frequency domain (momentum space), using the
Fourier transform of the sample density distribution. Here
k ¼ jkj is the momentum wave number of the azimuthally
averaged spectrum, N is the total atom number, and h� � �i
denotes ensemble averaging. In the power spectra
[Fig. 3(a)], we clearly observe rapid growth of a nonzero
momentum peak at short hold time (marked by an arrow),
indicating the development of density waves at a dominant
length scale throughout the sample. The nonzero momen-
tum peak then dissipates at longer hold time until the power
spectrum finally becomes monotonic and stationary, which

signifies the collapse of density waves and fragmentation of
the sample into solitons that later becomes uncorrelated in
coordinate space.
The evidence of MI-induced wave amplification at

different interaction strengths is best illustrated when we
plot the relative growth spectra S̃ðk; τÞ ¼ Sðk; τÞ=Sðk; τ0Þ,
normalized by the initial power spectrum at τ0 ¼ 2 ms.
This allows us to determine which mode has the largest
growth rate. For different samples in Figs. 3(b) and 3(c), the
momentum peak is clearly visible within 0.2=μm < k <
1=μm at short hold time. The growth patterns look similar
for samples with different gf, although the peak location,
height, and the evolution timescale vary. We identify the
peak wave number kp and find consistency with the
prediction from MI in Fig. 3(d).
Another remarkable prediction from MI is that, regard-

less of the dimensionality of the system, the power
spectrum at kp exhibits a universal time and amplitude
scaling behavior with respect to the interaction timescale
γ−1. This is based on extending the Bogoliubov phonon
picture to the regime under attractive interactions, which

(a)

(b)

(c)

FIG. 2. Townes solitons and the Townes profiles. (a) Sample
images of single solitary waves (gf ¼ −0.034) recorded at
τ ¼ 100 ms. (b) Density line cuts (solid circles) through the
center of images as numerically labeled in (a). Each data is offset
by 4.5=μm2 for viewing. Solid lines are the Townes profiles of
peak densities n0 ¼ 5.1=μm2 (for #1, #3) and 5.8=μm2

(for #2), respectively. (c) Azimuthally averaged radial profile
(solid circles) from the mean density image of (a) (inset:
30 × 30 μm2), in close comparison with theory (solid curve)
calculated using n0 ¼ 5.1=μm2. Nearby dispersed blobs contrib-
ute to a small background at r ≳ 7 μm.
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FIG. 3. Dynamics and universal scaling in the density power
spectra. (a) Sample spectra Sðk; τÞ at gf ¼ −0.027 and the
indicated hold time τ. (b) Corresponding growth spectra
S̃ðk; τÞ ¼ Sðk; τÞ=Sðk; τ0Þ with τ0 ¼ 2 ms. (c) Sample growth
spectra S̃ at gf ¼ −0.019 and hold time up to 200 ms. Vertical
dashed lines in (b) and (c) mark the peak wave number kp. (d) kp
versus interaction frequency γ (filled circles) measured at gf ¼
−0.004 (gray), −0.011 (black), −0.019 (red), −0.027 (blue), and
−0.034 (magenta and olive), respectively. Corresponding S̃ðkp; τÞ
are shown in the inset of (e). Solid line is the prediction
kMI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γm=ℏ

p
. Error bars include systematic and statistical

errors. (e) Scaled spectra S plotted using Eq. (1), which collapse
approximately onto a single curve except for the one at
gf ¼ −0.004. Dashed line (Solid line) is a hyperbolic (exponen-
tial) fit to Phase I, τ̃ < 0.8 (II, τ̃ > 0.8), of the collapsed spectra;
see text.
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predicts that collective modes of opposite momenta are
generated in pairs, as seeded from initial density perturba-
tions, and subsequently form density waves along the
associative directions while being amplified at a rate γ
until significant depletion of the ground state atoms
occurs [31].
In Fig. 3(e), we experimentally test the scaling relation in

the peak growth spectra S̃ðkp; τÞ, covering the entire time
period. We summarize the scaling relation as follows:

Sðτ̃Þ ≈ γ

γ̄i
½S̃ðkp; τ̃Þ − 1�; ð1Þ

where τ̃ ¼ γτ is the scaled time and Sðτ̃Þ is the scaled
spectrum. In the amplitude scaling, we normalize γ with the
mean initial interaction energy unit γ̄i ¼ 306 s−1 before the
quench [31]. We show that six power spectra, each with
different γ, can collapse onto a single curve over a
surprisingly long scaled time τ̃ < 10. The only exception
is the spectrum at gf ¼ −0.004, where we have used γ� ¼
3.2γ to force its collapse within τ̃ ≤ 0.8. This different
behavior is likely due to a weak horizontal trap corrugation
influencing the dynamics, as noted in Fig. 1(d).
From this universal spectrum, we identify two distinct

regimes of dynamics, divided by a critical time τ̃c ≈ 0.8 as
shown in Fig. 3(e). We label the time period τ̃ ≤ τ̃c for
MI with an amplified (hyperbolic) growth of density
waves [31],

S̃ðkp; τÞ ≈ 1þ α
γ̄i
γ
sinh2ðγτÞ; ð2Þ

where α ¼ 1.5ð1Þ is determined from a fit to Sðτ̃Þ for
τ̃ ≤ 0.5; α ¼ 2 is obtained from the theory calculation for
τ̃ ≪ 1, neglecting the depletion of ground state atoms,
dissipation, or interaction between the collective modes.
Beyond τ̃ ≥ τ̃c after Sðτ̃Þ reaches the order of unity,
dynamics enters the second phase, decaying with a time
constant Δτ̃ ∼ 0.8 and transitioning to a slowly evolving,
quasistationary behavior.
Our data suggest the existence of a universal time and

amplitude scaling behavior and a limit for the amplified
density wave, followed by a universal dynamics for the
wave collapse and soliton formation. For gf ¼ −0.004,
however, S̃ðkp; τÞ remains slowly growing within
1 ≤ γ�τ ≤ 10, suggesting a less severe wave collapse.
Following the observed density wave collapse dynamics,

a 2D sample fragments into many solitary wave packets of
characteristic size σ ∼ ξ. As seen in Fig. 1, due to the close
proximity of many wave packets (also with characteristic
distances ∼ξ), collisions between them may induce col-
lapses that lead to rapid atom number loss. Here, we show
that the MI timescale continues to dominate the collision
dynamics and the total atom number loss in a quenched 2D
Bose gas.

In a recent study of 1D soliton collisions [41], it is shown
that merger occurs when solitons of similar phases collide,
and two solitons of opposite phases appear to repel each
other. In 2D, the merger of two solitonlike wave packets
should lead to a new atom number Na > Nth. This can
induce collapse that quickly removes the merged soliton.
For solitons or density blobs formed by MI with randomly
seeded density waves in a large 2D sample, one expects no
fixed phase relationship between neighbors. Merger can
thus occur randomly throughout the sample and the total
atom number loss may reveal the scaling of soliton binary
collision losses.
In Fig. 4, we examine the total atom number loss for the

samples quenched to different gf (Fig. 1). We observe the
onset of loss in each sample at a time τ corresponding
roughly to the critical time τ̃c, a behavior similarly observed
for MI in 1D [16]. Beyond the critical time, we confirm that
the loss curves can be well captured by a simple two-body
loss model, _N=N ¼ −Γ2bodyN=A. We attribute this behav-
ior to the dominance of binary collisions between solitons
or density blobs that trigger collapse and atom number loss;
without triggered collapse, the usual three-body recombi-
nation loss should be negligible [42]. In Fig. 4(b), we find a
linear dependence on jgfj in the measured loss coefficients
Γ2body. This in fact suggests a constant binary loss coef-
ficient Γs for colliding wave packets, where Γs ¼ Γ2bodyN̄a
[31] and N̄ajgfj ≈ 6 is the measured universal number for
solitary waves formed by MI.
We suspect this universal loss behavior results from MI

scaling and 2D scale invariance, which suggests a constant
binary loss coefficient,

(a) (b)

(c)

FIG. 4. Universal soliton collision dynamics in 2D. (a) Sample
loss curves in total atom number N measured at the indicated
interaction gf . Solid lines are two-body loss fits after atom loss
initiates. (b) Fitted rate coefficients. Solid line is a linear fit,
giving a slope Γ2body=jgfj ¼ 3.8ð2Þ × 10−6 cm2= s. (c) 2D
soliton binary loss coefficients Γs determined from the rate
coefficients in (b) and N̄a as in Fig. 1(c), and compared with
the universal prediction Eq. (3), giving a mean η ¼ 1.5ð1Þ
(dashed line) and agreeing with η ¼ 1.5ð3Þ alternatively deter-

mined from the fitted slope in (b) and mean N̄ajgfj ¼ 6ð1Þ. Error
bars are standard errors. Uncertainties in gf are smaller than the
size of symbols [31].
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Γs ¼ η
ℏπ
m

; ð3Þ

independent of the interaction parameters (ni; gf). This is
because the collision rate Γs ∼ σv̄ and the dependences on
length scales in the linear cross section σ ≈ ξ and relative
velocity v̄ ≈

ffiffiffi
2

p
ℏπ=mξ cancel each other; the constant

η ≈
ffiffiffi
2

p
is estimated for ∼50% probability of merger per

collision or, equivalently, on average one soliton or
density-blob loss per collision event. If Eq. (3) holds,
we expect a collision lifetime 1=nsΓs ∼ γ−1, where ns ¼
ni=N̄a is the initial soliton/blob density [31]. This suggests
that wave collapse and binary collision likely take place at
the same rate during the second phase of the density
evolution.
To unambiguously confirm the universality of collision

dynamics, in Fig. 4(c) we deduce Γs independently using
experimentally determined values (Γ2body, N̄a) at each gf.
Our results conform very well with the prediction by
Eq. (3), giving a mean η ≈ 1.5. We emphasize here that
the loss coefficients universally depend only on the
physical constants ℏ=m is a remarkable manifestation of
MI and scale-invariant symmetry in 2D. The observations
in Figs. 3 and 4 together confirm that interaction quench
dynamics leads to Townes soliton formation at τ ≳ γ−1,
followed by collision (that induces collapse) also at the
same timescale γ−1 universally governed by MI.
In summary, we study the universal nonequilibrium

dynamics in degenerate 2D Bose gases quenched from
repulsive to attractive interactions, and observe the dynami-
cal formation of Townes solitons from MI. Townes solitons
are observed to be collisionally unstable. However, further
stabilization and manipulation may be possible [11,43–45].
We note that the initial shape and finite sample size can be
further manipulated to invoke strong boundary effects in
quench-induced MI [31]. Using slow interaction ramps
may also induce MI dynamics deviating from the reported
universal behavior. Soliton formation may be disrupted,
leading to, for example, only partial collapse to the Townes
profiles [3]. Lastly, we comment that controlled formation
of 2D solitons via pair-production processes in MI may find
future applications in matter-wave interferometry [46,47],
or even in the generation and distribution of many-body
entanglement [48–51].
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