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Electrical synapses play a major role in setting up neuronal synchronization, but the precise mechanisms
whereby these synapses contribute to synchrony are subtle and remain elusive. To investigate these
mechanisms mean-field theories for quadratic integrate-and-fire neurons with electrical synapses have been
recently put forward. Still, the validity of these theories is controversial since they assume that the neurons
produce unrealistic, symmetric spikes, ignoring the well-known impact of spike shape on synchronization.
Here, we show that the assumption of symmetric spikes can be relaxed in such theories. The resulting
mean-field equations reveal a dual role of electrical synapses: First, they equalize membrane potentials
favoring the emergence of synchrony. Second, electrical synapses act as “virtual chemical synapses,”
which can be either excitatory or inhibitory depending upon the spike shape. Our results offer a precise
mathematical explanation of the intricate effect of electrical synapses in collective synchronization. This
reconciles previous theoretical and numerical works, and confirms the suitability of recent low-dimensional
mean-field theories to investigate electrically coupled neuronal networks.
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Electrical coupling via gap junctions is broadly present
across brain areas [1–5]. There is ample experimental
evidence that gap junctions are involved in synchronizing
inhibitory networks [6–15]. Yet, despite the fact that
electrical synapses are recognized to constitute a critical
component of the brain, the function of these junctions and
the mechanisms whereby they contribute to synchrony are
subtle and not well understood [4,15].
Unlike chemical synapses, the transmission of action

potentials via gap junctions greatly depends upon the overall
shape of the action potential. This makes the effects of
electrical coupling far from trivial, and the theoretical and
computational analysis of electrically coupled networks of
spiking neurons a difficult task. Previous theoretical studies
identified both the shape of the spikes and the firing
frequency of the neurons as key parameters influencing
synchrony [16–22]. Yet, a precise mechanistic explanation
of the role of these parameters in synchrony is lagging, and
different works often provide results that are difficult to
reconcile. For example, studies on homogeneous, two-
neuron networks invoke the weak coupling limit and find
that electrical and chemical synapses combine their effect in
a linear manner [17,18]. Moreover, the shape of the spikes
determines whether electrical synapses cooperate or compete
with inhibition for synchrony [18]. In contrast, works
investigating large heterogeneous networks suggest that
electrical and inhibitory synapses play distinct roles:
While strong electrical coupling leads to collective syn-
chrony [22–24], strong inhibition typically leads to the
suppression of firing and destroys synchrony [25–28].

Rather than investigating the dynamics of large popu-
lations of spiking neurons, an alternative and widespread
theoretical approach is to use so-called mean-field models
(also called firing-rate or neural-mass models) [29]. Such
models are simplified, low-dimensional mathematical
descriptions of the mean activity of the population but
they only characterize populations with chemical synapses.
Yet, an important theoretical achievement linking individ-
ual and global dynamics has been recently accomplished
with the advent of the Ott-Antonsen theory [30], and
with its application to populations of θ neurons [31] and
quadratic integrate-and-fire (QIF) neurons [32]. Notably,
these novel theoretical approaches readily apply to net-
works with electrical synapses [33–36].
Unfortunately, the mean-field theories proposed in

[31,32] rely on an assumption of critical importance for
electrically coupled networks: Spikes need to have a very
particular symmetric shape that is unrealistic [see Fig. 1(a)],
and this may largely alter the network dynamics. As we
show below this is the reason why the low-dimensional
firing-rate equations (FREs) for electrically coupled net-
works originally derived in [33,34] fail to elucidate how
chemical and electrical couplings might add their effects
linearly, as found in [17,18]. Therefore, though the mean-
field theories in [31,32] have been successfully applied to
investigate networks with chemical synapses [28,37–57],
their suitability to investigate synchrony in networks with
gap junctions remains questionable.
In this Letter, we show that the mean-field theory

originally proposed in [32] can be generalized to account
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for nonsymmetric spikes. Remarkably, this leads to an
extension of the FREs in [34], which provides the first
precise mechanistic explanation of the dual role of elec-
trical synapses in collective synchrony. This explanation
reconciles previous disparate theoretical and numerical
results on the intricate effects of electrical coupling in
synchrony, and consolidates the FREs for QIF neurons as a
valid and singular low-dimensional description for pop-
ulations of electrically coupled neurons.
Quadratic integrate-and-fire neuron.—First of all, we

introduce the QIF model, and explain the main idea to
generalize the mean-field theory developed in [32].
The model describes the evolution of the membrane
potential variable V via the first-order ordinary differential
equation [58–60]

τ _V ¼ V2 þ η; if V > Vp then V ← −Vr: ð1Þ

The overdot denotes the derivative with respect to time, τ is
the membrane’s time constant, and η represents an external
current. Because of the quadratic nonlinearity in Eq. (1), V
may escape to infinity in a finite time. To prevent this, the
QIF model incorporates a resetting rule: Each time the
neuron’s membrane potential V reaches the peak value Vp,
the neuron emits a spike and the voltage is reset to −Vr
(here we consider Vp, Vr > 0), see Fig. 1.
It is convenient to define a positive, real parameter

characterizing spike asymmetry as the ratio [61]

a≡ Vp

Vr
: ð2Þ

When a ¼ 1, the resetting rule of the QIF model is
symmetric, see Fig. 1(a). This symmetry is implicitly
assumed in the transformation between the QIF and the
θ-neuron models, which can be formally performed in the
limit Vr ¼ Vp → ∞ [62].

The mean-field theory in [32] assumes symmetric reset-
ting, a ¼ 1, and then adopts the limit Vr → ∞. We next
show that the assumption of symmetric resetting can be
relaxed in this theory, leading to a novel low-dimensional
firing-rate model with arbitrary spike asymmetry.
Population model.—We investigate a population of QIF

neurons

τ _Vj ¼ V2
j þ ηj þ JτrðtÞ þ g½vðtÞ − Vj�; ð3Þ

with the resetting rule of Eq. (1). The index j ¼ 1;…; N
labels all the neurons in the population, and the parameters
ηj represent external currents that are taken from some
prescribed probability distribution GðηÞ.
In Eq. (3) electrical coupling, of strength g ≥ 0, diffu-

sively couples each neuron’s membrane potential with
the mean membrane potential vðtÞ ¼ ð1=NÞPN

j¼1 VjðtÞ.
Additionally, each neuron in the population is connected to
all the other neurons via chemical synapses of strength J.
Electrical synapses typically connect inhibitory neurons
and hence J should be thought of as a negative parameter.
Chemical coupling is mediated by the average firing rate
rðtÞ ¼ 1=ðNτsÞ

P
N
j¼1

P
k

R
t
t−τs dt

0δðt0 − tkjÞ, where tkj is the
time of the kth spike of the jth neuron, δðtÞ is the Dirac
delta function, and τs ≪ 1.
Theoretical analysis.—Next, we perform the thermody-

namic limit, drop the indices of Eqs. (3), and define the
time-dependent conditional density ρðVjη; tÞ, such that
ρðVjη; tÞdV is the fraction of neurons with membrane
voltage between V and V þ dV, and heterogeneity para-
meter η at time t. The density ρ necessarily obeys the
continuity equation

τ∂tρþ ∂Vf½V2 þ ηþ Jτrþ gðv − VÞ�ρg ¼ 0: ð4Þ

This equation can be solved resorting to the Lorentzian
ansatz (related to the Ott-Antonsen ansatz [30] through a
conformal mapping [32])

ρðVjη; tÞ ¼ 1

π

xðη; tÞ
½V − yðη; tÞ�2 þ xðη; tÞ2 ; ð5Þ

which is the asymptotic shape of the density in the long time
limit assuming that V spans over the whole real line [32,34].
We note that in numerical simulations V ∈ ð−Vr; VpÞ, and
therefore the Lorentzian ansatz Eq. (5) is an approximation
that works progressively better as Vp, Vr → ∞.
Inserting Eq. (5) into Eq. (4), we get the evolution

equations for xðη; tÞ and yðη; tÞ. Nevertheless, before doing
so, it is convenient to express the global quantities rðtÞ and
vðtÞ in Eq. (4) in terms of xðη; tÞ and yðη; tÞ. Regarding
the mean firing rate r, it is related with the width xðη; tÞ of
the Lorentzian ansatz [32]. Indeed, the firing rate for
neurons with a given η value is the probability flux at
Vp (taken at infinity), which gives the identity

(a)

(b)

FIG. 1. Time series of an oscillatory QIF neuron, Eq. (1), with
(a) symmetric, and (b) nonsymmetric resetting rule. η ¼ 1,
τ ¼ 10 ms.
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rðη; tÞ ¼ xðη; tÞ=ðπτÞ. Then, the mean firing rate rðtÞ is
given by the integral over all η

rðtÞ ¼ 1

πτ

Z
∞

−∞
xðη; tÞGðηÞdη: ð6Þ

Mean membrane potential for general resetting rule.—
Next, we show that, for general resetting, the mean
membrane potential v depends on the central voltages
yðη; tÞ as well as on the widths xðη; tÞ in Eq. (5). This
combined dependence underlies the dual effects of elec-
trical synapses.
The average voltage for neurons with a certain η value

can be calculated taking the following limit [63]:

vðη; tÞ ¼ lim
Vr→∞

Z
Vp¼aVr

−Vr

ρðVjη; tÞVdV: ð7Þ

The mean-field theory originally proposed in [32] considers
a ¼ 1. However, here we relax this assumption and split
the integral in Eq. (7) into two parts: one integral with
symmetric integration limits (Cauchy principal value), and
another one with the remaining integration interval

vðη; tÞ ¼
�
p:v:

Z
∞

−∞
þ lim

Vr→∞

Z
aVr

Vr

�
ρðVjη; tÞVdV: ð8Þ

The first integral simply yields the center of the distribution
of membrane potentials yðη; tÞ, see Eq. (5). The second
integral is the contribution to the mean membrane voltage
due to asymmetric spike resetting, and it can be evaluated in
closed form. Then, after taking the limit, we find

vðη; tÞ ¼ yðη; tÞ þ ln a
π

xðη; tÞ: ð9Þ

This identity pinpoints the deviation of the mean membrane
potential vðη; tÞ, with respect to the center of the distribu-
tion of voltages yðη; tÞ, due to asymmetric spike resetting,
a ≠ 1. Remarkably, this deviation is both proportional to
the firing rate through xðη; tÞ, and to ln a. Therefore,
for spikes with a > 1, the mean membrane voltage is
above the center of the distribution, whereas for spikes with
0 < a < 1 the mean membrane voltage is below yðη; tÞ.
For symmetric resetting, the mean membrane potential

vsðtÞ of the entire population is obtained integrating yðη; tÞ
over all η values:

vsðtÞ≡
Z

∞

−∞
yðη; tÞGðηÞdη: ð10Þ

In the general case of asymmetric spike resetting, the mean
membrane voltage is obtained integrating Eq. (9) over η.
Hence, using Eqs. (6) and (10), we find

vðtÞ ¼ vsðtÞ þ ðτ ln aÞrðtÞ: ð11Þ

Dynamics in the “Lorentzian manifold”.—The evolu-
tion equations for xðη; tÞ and yðη; tÞ, obtained substituting
Eq. (5) into Eq. (4), can be condensed into one via the
complex variable wðη; tÞ≡ xðη; tÞ þ iyðη; tÞ:

τ∂twðη;tÞ¼ i½ηþðJþg lnaÞτr−w2�þgðivs−wÞ; ð12Þ

where r and vs are the integrals in Eqs. (6) and (10). Note
that Eq. (12) is an infinite dimensional system, since each
wðη; tÞ is coupled to all the other functions wðη0; tÞ.
Three results follow from Eq. (12), which are valid

irrespective of the specific form of the distribution GðηÞ.
First, asymmetric spike resetting influences the collective
dynamics of the network only in the presence of electrical
coupling g ≠ 0. Second, the term ln a weights the “virtual
chemical coupling,” which linearly adds to the actual
chemical coupling constant J. Moreover, the sign of ln a
determines if this contribution is excitatory or inhibitory.
Thus, in the presence of electrical coupling, the effective
chemical coupling constant becomes

JeffðJ; g; aÞ ¼ J þ g ln a: ð13Þ

Third, terms with electrical coupling g appear at two
different places in Eq. (12), indicating a dual role of gap
junctions in the dynamics of w.
Firing-rate equations.—To gain further insight into the

effects of electrical coupling we adopt hereafter Lorentzian
distributed currents with center at η̄ and half-width Δ:
GðηÞ ¼ ðΔ=πÞ=½ðη − η̄Þ2 þ Δ2�. In this case a maximal
dimensionality reduction is achieved, since the integrals
in Eqs. (6) and (10) can be evaluated applying the residue
theorem. We analytically extend wðη; tÞ into complex η
[32], close the integrals by an arc at infinity in the complex
half-plane ImðηÞ < 0 [64], and obtain πτrðtÞ þ ivs ¼
wðη̄ − iΔ; tÞ. Then, we evaluate Eq. (12) at η ¼ η̄ − iΔ,
obtaining the FREs

τ_r ¼ Δ
τπ

þ 2rvs − gr; ð14aÞ

τ _vs ¼ v2s þ η̄ − ðπτrÞ2 þ ðJ þ g ln aÞτr: ð14bÞ

This system of two ordinary differential equations for the
mean firing rate r and for the auxiliary variable vs—see
Eq. (11)—describes the dynamics of the ensemble exactly
in the limit of infinite N, Vp, and Vr The dual role of
the electrical coupling g is clearly described by the FREs:
First, electrical coupling enters in Eq. (14a), reducing the
firing rate, and hence reducing the width of the distribution
of membrane potentials. This contribution homogenizes
membrane potentials and, for large enough g, favors the
emergence of collective synchronization [34]. Second,
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electrical coupling enters in Eq. (14b), contributing as a
virtual chemical coupling. Depending on whether a is
larger or smaller than 1, electrical and chemical synapses
cooperate or compete for synchrony.
The relevant parameters of Eqs. (14) are η̄, the coupling

constants J and g, and the spike asymmetry a (one can
assume Δ ¼ 1 and τ ¼ 10 ms without loss of generality).
Additionally, parameters a and J both act in the same term
of Eq. (14) and hence they cannot produce qualitatively
different dynamical behaviors. Accordingly, we consider
J ¼ 0 hereafter and borrow the results of the bifurcation
analysis in [34], which can be directly applied here
replacing the chemical coupling constant J by the effective

chemical coupling Eq. (13) [65]. The phase diagram in
Fig. 2 shows the bifurcation loci of the FREs for three
values of a. Three bifurcations, Hopf (red), saddle-node
(black), and homoclinic (green), tangentially meet at the
Takens-Bogdanov (TB) point,

ðη=ΔÞTB ¼ −
1

π
ln a; ð15Þ

around which the phase diagram organizes. The homoclinic
curve (shown only for a ¼ 4) moves parallel to the Hopf
line for a while, and then tangentially meets the upper
branch of the Saddle-Node (SN) bifurcating line at a
saddle-node-separatrix-loop (SNSL) point. At this point,
the SN boundary becomes a SN on the invariant circle
(SNIC) boundary (black) that together with the Hopf and
homoclinic lines encloses the region of synchronization
(sync) where collective oscillations occur. Note that two
small regions of bistability are located in the region limited
by the three codimension-two points: cusp, TB, and SNSL.
In Fig. 2 the SNIC bifurcation lines have a vertical

asymptote precisely at the same η̄ value as the TB point,
Eq. (15). For 0 < a < 1, the asymptote is located at positive
values of η̄, and shifts to the left as a increases. Hence,
synchronization is hindered for spikes with 0 < a < 1, and
favored for spikes with a > 1 [66]. In Fig. 3 we depict the
time series of the firing rate in numerical simulations of both
the network Eqs. (3) and the FREs Eqs. (14), for three values
of the parameter a ¼ f1=4; 1; 4g. In the first row, we used
spikes with Vp ¼ 100 in Eqs. (3). Though the agreement
between the models is not perfect, the mean-field Eqs. (14)
accurately predict the emergence of oscillations in Eqs. (3) as
a is increased. Finally, for Vp ¼ 1000 (second row), the
agreement greatly improves showing that the dynamics of
the network Eqs. (3) converges to that of the FREs for large
values of Vp.

FIG. 2. Phase diagram of the FREs (14) for electrical coupling
only (J ¼ 0) and for three different values of the asymmetry
parameter a. The region of synchronization (“sync”), located in the
upper-right part of the diagram, enlarges as a grows. Symbol ×
indicates the parameters value (1,2.5), used in Fig. 3. To lighten the
diagram, homoclinic bifurcations and codimension-2 points—
cusp, saddle-node-separatrix-loop (SNSL), and Takens-Bogdanov
(TB)—are omitted in the cases a ¼ 1 and a ¼ 1=4.

FIG. 3. Time series of rðtÞ for FREs (14) (red) and network Eqs. (3) with N ¼ 104 (black). Peak values are (a)–(c) Vp ¼ 100, and
(d)–(f) Vp ¼ 1000. Three values of the spike asymmetry parameter are used: (a),(d) a ¼ 1=4, (b),(e) a ¼ 1, (c),(f) a ¼ 4. Parameters
correspond to the symbol × in Fig. 2: J ¼ 0, g ¼ 2.5, η̄ ¼ Δ ¼ 1, and τ ¼ 10 ms. We used the explicit Euler scheme with dt ¼ 10−4 ms
and τs ¼ 10−3 ms.
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Conclusions.—We showed that the spike resetting rule
of the QIF model can be incorporated in the mean-field
theory proposed in [32]. This extension reveals a nontrivial
dependence of the mean membrane voltage on the firing
rate, Eq. (11), which turns out to be crucial for deciphering
the role of electrical synapses in synchrony, and to
reconcile previous theoretical and numerical work.
Previous works have sought to model electrical coupling
in integrate-and-fire models introducing, heuristically, an
additional impulsive coupling contribution [17–22].
Remarkably, such contribution arises from first principles
in our mean-field theory, and is the consequence of the
asymmetry of the spikes. Moreover, as the FREs (14) are
valid for arbitrary coupling strengths, we conclude that
electrical and chemical coupling do not simply add linearly
for weak coupling, as suggested in previous work, see, e.g.,
[23]. Finally, given that traditional mean-field theories only
account for chemically coupled ensembles, we regard
Eqs. (14) as a unique tool to investigate neural networks
with both chemical and electrical synapses.

We acknowledge support by the Agencia Estatal de
Investigación and Fondo Europeo de Desarrollo Regional
under Projects No. PID2019-109918GB-I00 and
No. FIS2016-74957-P (AEI/FEDER, EU).
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