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Bond-dependent magnetic interactions can generate exotic phases such as Kitaev spin-liquid states.
Experimentally determining the values of bond-dependent interactions is a challenging but crucial problem.
Here, I show that each symmetry-allowed nearest-neighbor interaction on triangular and honeycomb
lattices has a distinct signature in paramagnetic neutron-diffraction data, and that such data contain
sufficient information to determine the spin Hamiltonian unambiguously via unconstrained fits. Moreover,
I show that bond-dependent interactions can often be extracted from powder-averaged data. These results
facilitate experimental determination of spin Hamiltonians for materials that do not show conventional
magnetic ordering.
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The discovery and characterization of magnetic materials
with novel ground states such as topological order is an
overarching goal of condensed-matter physics. Such mate-
rials have potential applications for topological quantum
computation [1,2], and are of fundamental interest because
they can show entangled ground states whose excitations
have fractional quantum numbers [3,4]. Traditionally, the
search for such states has concentrated on materials with
isotropic (Heisenberg) magnetic interactions. However, the
discovery of the celebrated Kitaev model [1,5–7]—in which
bond-dependent interactions on the honeycomb lattice
stabilize a spin-liquid ground state with fractionalized
excitations—has led to intense interest in materials where
strong spin-orbit coupling generates bond-dependent inter-
actions [8–11]. Candidate honeycomb-lattice materials
include α-RuCl3 [12–16], YbCl3 [17], NaNi2BiO6−δ [18],
H3LiIr2O6 [19,20], Na2IrO3 [21–23], and α-Li2IrO3

[24,25]. Bond-dependent interactions on the triangular
lattice may generate quantum spin-liquid states [26], with
potential realizations including YbMgGaO4 [27–30],
NaYbS2 [31,32], and NaYbO2 [33,34].
Robust experimental determination of bond-dependent

interactions is key to identifying promising candidate mate-
rials. Yet, such interactions are challenging to measure; e.g.,
in the well-studied Kitaev candidate material α-RuCl3, no
clear consensus has been reached on the sign ormagnitude of
the Kitaev interaction [35]. There are two main reasons for
such difficulties. First, the spin Hamiltonian for triangular
and honeycomb lattices contains four nearest-neighbor
interactions [36], but most experiments are sensitive only
to a subset of these. Second, current data-analysis approaches
typically assume conventional long-rangemagnetic ordering
—e.g., to model magnon spectra [13,37–40]—but such
ordering is not expected in topologically ordered or spin-
liquid states [4]. When long-range ordering does occur in
candidate materials, it is often unclear if it is driven by the

nearest-neighbor model or by perturbations such as further-
neighbor interactions or structural disorder [41–45].
In this Letter, I explore the extent to which bond-

dependent interactions can be extracted from neutron-
diffraction patterns measured in the paramagnetic phase,
above any spin ordering or freezing temperature TN .
Such data show a continuous (diffuse) variation of the
magnetic scattering intensity IðQÞ with wave vector
Q ¼ ha� þ kb� þ lc�. Crucially, the diffuse IðQÞ varies
continuously with the underlying magnetic interactions and
so may, in principle, determine them uniquely; however,
previous modeling focused on bond-independent inter-
actions [46–50]. By contrast, Bragg diffraction below TN
only restricts the interactions to a (frequently large) search
space compatible with the observed ordering [22]. I proceed
by simulating diffuse IðQÞ data for classical bond-depen-
dent models (test cases) on triangular and honeycomb
lattices. I show that such data contain signatures of the
signs of bond-dependent interactions, the interaction values
can be accurately determined via unconstrained fits to
simulated data, and this approach is robust to statistical
noise typical of real measurements. Perhaps most surpris-
ingly, the powder averaged IðQ ¼ jQjÞ retains some sensi-
tivity to bond-dependent interactions, and so can constrain
them when single-crystal samples are unavailable.
The most general nearest-neighbor spin Hamiltonian

allowed by threefold symmetry of the magnetic site has
the same form for triangular and honeycomb lattices [51],
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where superscript x, y, and z denote spin components with
respect to the x, y, and z axes shown in Fig. 1, and ϕij ∈
fð2π=3Þ;−ð2π=3Þ; 0g for bonds colored red, green, and
blue, respectively, in Fig. 1. The Hamiltonian contains
four interactions, whose physical origin is typically
superexchange between trigonally distorted edge-sharing
MO6 octahedra [22]: JX and JZ describe a conventional
XXZ model, while JA and JB are bond dependent.
Several parametrizations of Eq. (1) are in use [52]; I follow
the conventions of Ref. [36], which resemble those
applied to YbMgGaO4 [27–30]. A different parametrization
fJ; K;Γ;Γ0g is typically used for honeycomb systems
[22,36]. However, we will see that Eq. (1) has advantages
for interpreting IðQÞ data.
I consider seven test cases with interaction parameters

fJX; JZ; JA; JBg (“J’s”) covering a range of interaction
space: (i) the antiferromagnetic (AF) Heisenberg model,
f1; 1; 0; 0g; (ii) the AF Ising model, f0; 1; 0; 0g; (iii, iv) the
AF Heisenberg model with JA ¼ þ1 and −1 (≡1̄Þ,
respectively; (v, vi) the AF Heisenberg model with JB ¼
þ 3

4
and − 3

4
, respectively; and (vii) the ferromagnetic Kitaev

model, f2̄
3
; 2̄
3
; 2̄
3
; 2̄
3
g, which corresponds to fJ; K;Γ;Γ0g ¼

f0; 2̄; 0; 0g. Test cases (i) and (ii) are not bond dependent and
are included for comparison; (iii)–(vi) explore the effect of
changing signs of bond-dependent terms and are potentially
relevant to YbMgGaO4 [27–30]; and (vii) explores the
Kitaev limit potentially relevant to α-RuCl3 [13–16]. A
further 20 test cases, corresponding to models proposed for
α-RuCl3 [35], are considered in the Supplemental Material
[52]. For test cases (i)–(vii), I performed classical
Monte Carlo (MC) simulations of Eq. (1) with spin length
jSj ¼ 1 [52]. The simulation temperatureT ¼ 2 (in the same
units as the J’s) for (iii)–(vii) on the triangular lattice, and
T ¼ 1 otherwise, which is well above TN in all cases. The
energy-integrated magnetic neutron-diffraction intensity

IðQÞ ∝ ½fðQÞ�2
X
i;j;α;β

pαβhSαi Sβj ieiQ·rij ; ð2Þ

where α; β ∈ fx; y; zg denote Cartesian components, rij is
the vector connecting spins i and j, fðQÞ denotes an
arbitrary magnetic form factor (Yb3þ) [66], and

pαβ ≡ δαβ −QαQβ=Q2 ð3Þ

is the projection factor [67–69], which arises because
neutrons only “see” spin components perpendicular to Q,
and couples spin and spatial degrees of freedom.
Equation (3) is key to magnetic crystallography because
it usually allows the absolute spin structure to be solved from
T < TN neutron-diffraction data [70]. I will show that it also
allows bond-dependent interactions to be inferred from
T > TN neutron-diffraction data.
Figure 2 shows the single-crystal IðQÞ and powder IðQÞ

[46] for all test cases. Two orthogonal single-crystal planes
are shown: ðhk0Þ, and either ðh0lÞ for the triangular lattice
or ðhhlÞ for the honeycomb lattice. Our first key result is
that IðQÞ is qualitatively different in each case. In particu-
lar, it is strongly affected by changing the sign of JA or
JB, whereas other experiments (e.g., magnon spectra
[13,37–39]) are usually insensitive to at least one of these
signs. The differences in the plane perpendicular to ðhk0Þ
do not arise from interlayer interactions—absent in all test
cases—but instead from the projection factor, as I now
discuss for each test case. (i) The Heisenberg diffraction
pattern repeats periodically, except for the trivial decrease
of intensity with fðQÞ. This is because all diagonal
correlators hSαi Sαj i are equal and all off-diagonal correlators
hSαi Sβj i are zero; hence hpααi ¼ 2=3 is independent of Q.
(ii) The Ising diffraction pattern repeats periodically in the
ðhk0Þ plane but shows further Q dependence in the
perpendicular plane, because the intensity is dominated
by pzzhSzi Szji ¼ ð1 −Q2

z=Q2ÞhSziSzji terms. (iii, iv) Nonzero
JA causes nontrivial Q dependence in both planes because
it drives nonzero hSxi Syji and hSyi Sxji correlators, so that
terms like pxyhSxi Syji ¼ −QxQyhSxi Syji=Q2 contribute to
IðQÞ. (v, vi) Nonzero JB also causes nontrivial Q depend-
ence in both planes, but unlike the previous cases,
IðhklÞ ≠ Iðhkl̄Þ. This is because nonzero JB lowers the
hexagonal symmetry of the previous models to trigonal
[36], yielding nonzero terms like pxzhSxi Szji and pyzhSyi Szji
that change sign under either ðhklÞ → ðhkl̄Þ or Szi → −Szi
for all Sz. Since the latter is equivalent to JB → −JB in
Eq. (1), both ðhklÞ → ðhkl̄Þ and JB → −JB have the same
effect on IðQÞ. These results follow from basic properties
of Eqs. (1)–(3) that apply for quantum as well as classical
systems, and show that each interaction has a different
effect on IðQÞ. Dominant interactions can therefore be
identified by inspection of diffuse-scattering data.
I now obtain a theory that explains the modulation of

IðQÞ. I employ the Onsager reaction-field (MFO) method
[71,72] previously shown to give accurate results for
Heisenberg models [49,73–77]. The Fourier transform of
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FIG. 1. (a) Triangular and (b) honeycomb lattices. Spins are
referred to Cartesian axes x, y, and z, with z directed out of the
page. Conventional unit-cell vectors are a, b, and ckz. The three
bond types are shown as solid red, dashed green, and dotted
blue lines.
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FIG. 2. Simulated neutron-diffraction patterns in the paramagnetic phase for test cases (i)–(vii) discussed in the text. The interaction
parameters for eachmodel are shown left, with fJX; JZ; JA; JBg in roman font above the corresponding fJ; K;Γ;Γ0g in italic font. Column
(a) shows calculations for the triangular lattice (left to right: ðhk0Þ, ðh0lÞ, and powder diffraction patterns) and column (b) shows
calculations for the honeycomb lattice (left to right: ðhk0Þ, ðhhlÞ, and powder diffraction patterns). An isotropic g factor is assumed.
Results for Monte Carlo (MC) and reaction-field (MFO) approximations are shown separated by dashed black lines, as labeled on the top
panels. For powder patterns, MC results are shown as black circles; MFO results as red lines; and difference (MC–MFO) as blue lines. All
powder patterns are shown on the same intensity scale. For single-crystal patterns, reciprocal-latticevectorsa�,b�, and c� are labeled in the
top panels, and the first Brillouin zone is shown as awhite dashed line. Both single-crystal planes are shown on the same intensity scale for
each test case except honeycomb (i) and (ii), for which the intensity scale is doubled in the ðhhlÞ plane for clarity. In all calculations, the
triangular unit cell has dimensions jaj ¼ jbj ¼ 3.464Å, jcj ¼ 6.0, and the honeycomb unit cell has dimensions jaj ¼ jbj ¼ jcj ¼ 6.0Å.
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the interactions Jαβij ðQÞ≡ −
P

R Jαβij ðRÞe−iQ·R, where

Jαβij ðRÞ is the coefficient of Sαi S
β
j in Eq. (1) for sites i

and j separated by a lattice vector R. The Jαβij ðQÞ are
elements of a 3N × 3N interaction matrix, where N is the
number of sites in the unit cell. For the triangular lattice
(N ¼ 1), the interaction matrix

JðQÞ ¼ −

0
BB@

aJX þ bJA cJA −
ffiffiffi
2

p
bJB

cJA aJX − bJA
ffiffiffi
2

p
cJB

−
ffiffiffi
2

p
bJB

ffiffiffi
2

p
cJB aJZ

1
CCA; ð4Þ

where a ¼ 2½cos 2πðh þ kÞ þ cos 2πh þ cos 2πk�,
b ¼ 2 cos 2πðh þ kÞ − cos 2πh − cos 2πk, and c ¼ffiffiffi
3

p ðcos 2πk − cos 2πhÞ. For the honeycomb lattice
(N ¼ 2), the interaction matrix

JHðQÞ ¼
�

0 J

J� 0

�
; ð5Þ

where a, b, and c in Eq. (4) are replaced by
aH ¼ 1þ e2πih þ e−2πik, bH ¼ e−2πik − ð1þ e2πihÞ=2,
and cH ¼ ffiffiffi

3
p ð1 − e2πihÞ=2, respectively. Diagonalizing

the interaction matrix at each Q yields its eigenvalues λμ
and eigenvector components Uα;i

μ , where μ labels the 3N
eigenmodes and i labels sites at positions ri in the unit cell.
The T > TN scattering intensity in the reaction-field
approximation is given by

IMFOðQÞ ∝ ½fðQÞ�2
3N

X3N
μ¼1

jsμðQÞj2
1 − χ0½λμðQÞ − λ� ; ð6Þ

where χ0 ¼ 1=3T is the Curie susceptibility, and sμðQÞ¼P
i;αðn̂α−Qn̂α ·Q=Q2ÞUα;i

μ eiQ·ri with n̂α ∈ fx; y; zg.
Equation (6) is identical to the mean-field expression [78]
except for the reaction field λ, which is determined self-
consistently by requiring that

P
μ;q½1 − χ0ðλμðqÞ − λÞ�−1 ¼

3NNq for a grid of Nq ¼ 403 wave vectors in the Brillouin
zone. Figure 2 compares the single-crystal IðQÞ and powder
IðQÞ from reaction-field theory with the accurate MC
results. The agreement is very good in all cases; only in
the Ising case are subtle differences evident. The success of
reaction-field theory for bond-dependent interactions is
remarkable given its simplicity.
The sensitivity of IðQÞ to bond-dependent interactions

suggests that it may be possible to solve the inverse
problem—to infer interaction values from IðQÞ data. To
test this possibility, I performed unconstrained fits of the
four J’s, using MC single-crystal scattering planes as
simulated “data” for each test case. To make the tests
more realistic, data were adulterated with random noise
drawn from a normal distribution with σ equal to 5% of the

maximum intensity (“5% error bars”), as shown in
Fig. 3(a). An intensity scale factor was also fitted, as
required if data are not normalized in absolute intensity
units. In the fits, IðQÞ was calculated in the reaction-field
approximation because it is computationally efficient and
free from statistical noise. The nonlinear least-squares
algorithm in the MINUIT program [79] was used to minimize
the sum of squared residuals χ2. If the J’s are fully
determined by the data, a fit should converge to a global
minimum χ2min with nearly correct J’s, provided the initial
J’s are sufficiently close to optimal. Conversely, if the J’s are
underdetermined, fits will either fail, or yield several differ-
ent solutions with indistinguishable fit quality depending on
initial J’s.A unique solution is defined here as the absence of
low-lying false minima with χ2 < χ2min þ 15, where this
condition reflects the 99% confidence interval for five
parameters [80]. To test for uniqueness, I performed 50
separate fits initialized with different J’s randomly distrib-
uted in the range f−0.5∶0.5g [81]. In every test case, the fits
identified a unique solution with nearly correct J’s, and
convergence was achieved from nearly all (96%) of the
initial parameter sets. Similarly favorable results were
obtained for 20 α-RuCl3 test cases [52], demonstrating that
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FIG. 3. (a) Simulated “noisy” single-crystal data IðQÞ with 5%
error bars for the Kitaev model on the triangular lattice [test case
(vii)]. (b),(c) Values of the interaction parameters for test cases
(i)–(vii) for (b) triangular and (c) honeycomb lattices. In each
case, JX is shown as black diamonds, JZ as red circles, JA as
green squares, and JB as blue triangles. Error bars indicate values
obtained from unconstrained fits of all four parameters to two
single-crystal IðQÞ planes, such as those shown in (a). (d) Simu-
lated noisy powder IðQÞ data with 1% error bars for test case
(vii). (e) Experimental IðQÞ data for NaNi2BiO6−δ (black circles),
fit (red line), data–fit (blue line), and fitted incoherent level
(gray line).
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the approach is robust to inclusion of a third-neighbor
interaction and the rapid decay of the Ru3þ magnetic form
factor [14]. Figures 3(b) and 3(c) show the systematic error
in the optimal J’s due to the inaccuracy of the reaction-field
approximation. This error is usually small and the worst-
case error is 0.14 in JZ. These results show that bond-
dependent interactions can be reliably extracted from noisy
and unnormalized IðQÞ data.
As a more challenging test, I considered powder-

averaged IðQÞ data with 1% error bars [Fig. 3(d)]. On
the one hand, powder averaging causes much information
loss. In particular, powder data cannot distinguish �JB,
because JB → −JB is equivalent to ðhklÞ → ðhkl̄Þ; I there-
fore consider test cases (v, vi) together. On the other hand,
IðQÞ differs for the other test cases [Fig. 2]. Remarkably,
fits of the four J’s to noisy IðQÞ data yielded a unique
optimal solution with nearly correct J’s in 10 out of 12 test
cases. In the remaining cases—(iii) and (v, vi) for the
triangular lattice—two different solutions were identified,
which had nearly the same χ2. Parameter uncertainties were
also increased compared to single-crystal fits [52]. Despite
these limitations, the ability of powder fits to identify a
small number of candidate models suggests that IðQÞ can
provide a “fingerprint” of bond-dependent interactions—a
compact dataset that contains most of the discriminating
information.
I finally apply this methodology to published neutron

data of the candidate Kitaev material NaNi2BiO6−δ
(δ ¼ 0.33) [18], in which Ni3þ ions (S ¼ 3=2, J ¼ 1=2)
occupy a honeycomb lattice. The experimental IðQÞ data
shown in Fig. 3(e) were obtained by energy integrating the
T ¼ 10 K (> TN) inelastic neutron-scattering data of
Ref. [18]. In the fits, the measured magnetic moment of
2.21ð1Þ μB per Ni3þ was assumed [18], and an incoherent
(flat-in-Q) signal was fitted. For all fits, the magnitude of K
is at least twice that of J, Γ, and Γ0, and the predicted
in-plane magnetic ordering wave vector k ≈ ð1

3
; 1
3
Þ is con-

sistent with the measured value [18]. These results dem-
onstrate the successful application of our methodology
to experimental data and support the dominant Kitaev
interactions proposed in NaNi2BiO6−δ [18].
These results show that bond-dependent interactions on

triangular and honeycomb lattices have signatures in
diffuse neutron-scattering data at T > TN that enable
estimation of the interactions via unconstrained fits. This
unexpected sensitivity is mainly due to the projection
factor, Eq. (3); hence, it is important to measure IðQÞ
outside the ðhk0Þ plane where this factor is significant, and
to include it in calculations, which has not often been done.
Our methodology is generally applicable and employs
conventional least-squares optimization [49], providing a
robust and computationally efficient alternative to machine-
learning-based approaches [50], as well as to interaction-
independent approaches such as reverse Monte Carlo
refinement [82] and pair-distribution-function analysis

[83]. Key advantages are that measurements in high
magnetic fields are not required, and additional data such
as bulk magnetic susceptibility—related to IðQ→0Þ [84]—
can be included. A limitation is that quantum effects that
redistribute scattering intensity [85,86] are not included:
this may cause inaccuracy in fitted interaction values, but
does not affect sensitivity to interaction signs. Moreover, a
fit typically requires only a few hundred IðQÞ calculations
for convergence—taking∼60 s to fit to ∼104 data points on
a laptop—so that replacement of classical calculations by
more-expensive quantum calculations is feasible. If inter-
layer spin correlations are negligible above TN , our results
are unaffected by the layer stacking sequence—a useful
feature because of the prevalence of stacking faults in
quasi-2Dmaterials [87]. These results promise to accelerate
experimental determination of spin Hamiltonians of can-
didate materials that do not exhibit conventional magnetic
ordering, such as in the emerging field of “topology by
design” metal-organic frameworks [88].
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