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High-temperature superconductivity emerges in many different quantum materials, often in regions of
the phase diagram where the electronic kinetic energy is comparable to the electron-electron repulsion.
Describing such intermediate-coupling regimes has proven challenging as standard perturbative
approaches are inapplicable. Here, we employ quantum Monte Carlo methods to solve a multiband
Hubbard model that does not suffer from the sign problem and in which only repulsive interband
interactions are present. In contrast to previous sign-problem-free studies, we treat magnetic, super-
conducting, and charge degrees of freedom on an equal footing. We find an antiferromagnetic dome
accompanied by a metal-to-insulator crossover line in the intermediate-coupling regime, with a smaller
superconducting dome appearing in the metallic region. Across the antiferromagnetic dome, the magnetic
fluctuations change from overdamped in the metallic region to propagating in the insulating region. Our
findings shed new light on the intertwining between superconductivity, magnetism, and charge correlations
in quantum materials.
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Introduction.—While the problem of interacting
electrons is well-understood in the regimes where the
electron-electron repulsion is much smaller or much larger
than the kinetic energy, the regime where both energy
scales are comparable has remained elusive. It is precisely
in this regime that several unique electronic collective
phenomena are observed, high-temperature superconduc-
tivity being their poster child. In the cuprates, for example,
the highest superconducting (SC) transition temperatures
take place as the system moves from a Mott insulating to a
Fermi liquid behavior [1]. In superconducting iron pnic-
tides, although electronic interactions do not seem strong
enough to localize the electrons, they can significantly
reduce the coherence of the electronic quasiparticles [2–4].
Notwithstanding the appeal of constructing materials-
specific models that can quantitatively describe and predict
the properties of a moderately correlated compound, the
challenges in describing this regime and its prevalence in
several materials of interest warrant the investigation of
minimal models that focus on key ingredients of the
problem.
The Hubbard model is perhaps the most famous such

minimal model, in which electrons hopping on a lattice are
subject to an on-site repulsion that mimics a strongly
screened Coulomb interaction. In the face of the difficulties
in analyzing the intermediate-coupling regime analytically,
numerical methods such as dynamical mean-field theory
[5–8], density matrix renormalization group [9–11], or

quantum Monte Carlo (QMC) [12–19] have been exten-
sively applied. The main advantage of the latter is that it is
an exact and unbiased method and that it is not limited to a
one-dimensional geometry. However, it is intrinsically
subject to the fermionic sign problem [20,21], which
restricts the electronic occupation and temperature ranges
that can be efficiently simulated. Another popular minimal
model is the so-called spin-fermion model [22]. In this
case, the electron-electron interaction is substituted in lieu
of a collective bosonic antiferromagnetic (AFM) order
parameter that can be fine-tuned to quantum criticality.
This is motivated by the fact that AFM order is often
observed in moderately coupled quantum materials in
proximity to unconventional superconductivity. It was
recently realized that versions of the spin-fermion model
with two electronic flavors (such as two bands) possess a
symmetry that eliminates the sign problem [23]. This has
led to a flurry of QMC studies of spin-fermion and related
boson-fermion models, which revealed a nearly universal
enhancement of superconductivity at the bosonic quantum
critical point [24–30]. However, in these models, the AFM
order is introduced ad hoc rather than being treated on an
equal footing with SC and other electronic orders.
In this Letter, we construct a model free of the fermionic

sign problem in which we can treat all degrees of freedom
on an equal footing. As a function of the strength of the
electronic repulsion, we find an AFM dome intercepted
by a metal-to-insulator crossover line at high temperatures.
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As temperature is lowered, this crossover line eventually
becomes a first-order phase transition as it merges with the
magnetic dome. Crucially, a superconducting dome only
emerges near one edge of the AFM dome, providing
valuable information about the nature of the pairing
mechanism. We attribute this to the overdamped nature
of the spin fluctuations in this region. In contrast, in the
region where no SC emerges, spin fluctuations propagate
ballistically and cannot mediate sufficient pairing
attractions.
Microscopic interacting model.—Motivated by the

insight that led to the elimination of the sign problem
from spin-fermion models [21,23], we consider a simple
extension of the square-lattice Hubbard model to two
bands. Starting from the two-orbital Hubbard–Kanamori
Hamiltonian [4,31] and projecting onto states near
the Fermi level, one generally obtains five distinct
electron-electron interactions, Ui [32,33]. Physically, they
correspond to intraband (U4, U5) and interband (U1)
repulsion, spin-exchange coupling (U2), and pair-exchange
coupling (U3). Specifically, the Hamiltonian is given by
H ¼ H0 þHint, with

H0 ¼
X

kα

ϵcðkÞc†kαckα þ
X

kα

ϵdðkÞd†kαdkα ð1Þ

Hint ¼
X

iαβ

�
U1c

†
iαciαd

†
iβdiβ þ U2c

†
iαd

†
iβciβdiα

þU3

2
ðc†iαc†iβdiβdiα þ H:c:Þ

þU4c
†
iαc

†
iβciβciα þU5d

†
iαd

†
iβdiβdiα

�
; ð2Þ

where the operators c and d refer to the two bands, α and β
are spin indices, and i and k are, respectively, real- and
momentum-space indices. The square-lattice band disper-
sions ϵc;dðkÞ ¼ −2ðt� δÞ cos kxa − 2ðt ∓ δÞ cos kya ∓ μ
are parameterized by the nearest-neighbor hopping coef-
ficient t, a hopping anisotropy δ, and the chemical potential
μ (see inset in Fig. 1). Here we set δ ¼ 0.4t, μ ¼ −2t,
and the lattice parameter to a ¼ 1. As we show in the
Supplemental Material [34], this Hamiltonian is amenable
to sign-problem-free QMC simulations if we consider only
interband interactions, i.e., U4 ¼ U5 ¼ 0, impose the
relations U1=4 ¼ U2=2 ¼ U3=2 ¼ U > 0, and constrain
the spin indices in the U1 term to β ¼ α. This latter
constraint can be interpreted as a “single-ion” spin
anisotropy, which, in addition to allowing sign-problem-
free QMC simulations to be carried out, also allows for
magnetic order to be stabilized at finite temperatures.
Under these conditions, the Hamiltonian can be rewritten as

H ¼ H0 −U
X

i

Szi S
z
i ; ð3Þ

where

Szi ¼ c†iασ
z
αβdiβ þ H:c: ð4Þ

Note that the above constraints are much less severe than
the particle-hole symmetry that has to be imposed on the
single-band Hubbard model to avoid the sign problem. In
contrast, here there are no restrictions on the electron filling
of each band or on their dispersions. Importantly, as we
show below, the interband interactions alone are sufficient
to drive a plethora of ordered phases typically seen in
quantum materials of interest, such as insulating behavior,
magnetism, and superconductivity.
The inset in Fig. 1 depicts the specific band structure

used in this work, consisting of elliptical electronlike
and holelike bands at the center and at the corner of
the Brillouin zone. This dispersion was chosen so that
the Hamiltonian is invariant under fourfold rotations
followed by particle-hole exchange and a ðπ; πÞ translation
in momentum space. The choice of parameters implies
hnci þ ndi i ¼ 2 but nci ≠ ndi , where nc;di is the electronic
density of c (d) electrons at site i. The elliptical shape of the
Fermi surfaces was selected to suppress nesting that would
otherwise favor AFM. While we performed extensive
QMC simulations only for this set of band parameters,

FIG. 1. Phase diagram obtained from thermodynamic observ-
ables. In the vicinity of U=t ∼ 1, the phase diagram shows a
variety of electronic phases, including AFM, SC, and a transition
between metallic and insulating behaviors. No other ordered
phases were observed for 0 ≤ U ≤ 4t. The dark red full circles
mark the magnetic transitions determined from a scaling analysis.
Near U=t ≈ 0.75 for T=t < 0.1, we find that the transition
becomes first order (see Supplemental Material [34]), which is
indicated by empty squares and a dashed red line. The color scale
is logarithmic and corresponds to the compressibility χc [see
Fig. 2(c)], while the black dashed line marks the contour
χc ¼ 0.01. We interpret this near complete suppression of the
compressibility as a sign of insulating behavior. The green
triangles mark the superconducting critical temperatures obtained
from the Berezinskii–Kosterlitz–Thouless criterion for the system
size L ¼ 12; the green dashed line is an interpolation. The inset
shows the simulated band structure, exhibiting one electron
pocket centered at (0,0) and one hole pocket centered at ðπ; πÞ.
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simulations over narrower parameter ranges were also
performed for modified band parameters, yielding similar
phase diagrams.
Phase diagram.—The phase diagram of the microscopic

model shown in Fig. 1 was obtained from determinant
QMC simulations on L × L lattices with L ¼ 8, 10, 12, 14
and for temperatures T=t ≥ 0.025. Additional details of the
simulation are presented in the Supplemental Material [34].
The salient feature of the phase diagram is an antiferro-
magnetic dome (red curve) in the intermediate coupling
regime U ∼ t. Indeed, as shown in Fig. 2(a), the AFM
spin susceptibility at the wave vector Q ¼ ðπ; πÞ,
χs ¼ 4U2hR dτSzðQ; τÞSzð−Q; τ ¼ 0Þi þ 2U, displays a
sharp enhancement at low temperatures above a critical
interaction strength U=t ≈ 0.75, followed by a smoother
suppression near U=t ≈ 1.5. The AFM phase boundary in
Fig. 1 was determined using standard finite-size scaling
analysis appropriate for an Ising-type transition considering
the pairs of system sizes L ¼ ð8; 12Þ and L ¼ ð10; 14Þ
[43]. For T=t < 0.1, we find evidence that the magnetic
transition becomes first order near U=t ≈ 0.75 (see
Supplemental Material [34]). At higher temperatures and
interaction strengths, the magnetic transition appears con-
tinuous. For U=t > 1.5, no AFM transition was observed
down to the lowest temperature probed. We verified that
even in the nonmagnetic state, the magnetic susceptibility
remains peaked at the AFM wave vector Q ¼ ðπ; πÞ.
In addition to the AFM dome, we also found a

much narrower SC dome in the vicinity of U=t ¼ 0.75,
i.e., near one of the putative AFM quantum phase tran-
sitions. The green triangles and green dashed line denote
the SC transition temperatures Tc as determined by the
Berezinskii–Kosterlitz–Thouless criterion, ρsðTcÞ¼2Tc=π
for L ¼ 12, interpolated between neighboring points.
Importantly, this is an unconventional SC state with
gaps of opposite signs in the two bands. Figure 2(b)
shows the behavior of the corresponding pair susceptibility,

χp ¼ L−2P
ij

R
dτhP†

�;iðτÞP�;jð0Þi, where P�;i ¼
2ðci↑ci↓ − di↑di↓Þ as a function of U and T. Its main
features are the sharp peak observed slightly below
U=t ¼ 0.75, where the AFM dome begins, and the absence
of any enhancement near U=t ¼ 1.5, where the AFM dome
ends. Within our resolution, the transition between the SC
and AFM states appears first order. The sharp suppression
in the pair susceptibility indicates that any coexistence of
the two phases is limited to a narrow range of U=t in the
vicinity of U=t ≈ 0.75, although we observe no such
coexistence within our resolution.
To shed light on the behavior of the charge degrees of

freedom across the phase diagram, we extracted the charge
compressibility, χc ¼ L−2

R
dτ

P
ij hδρiðτÞδρjð0Þi, where

δρi ¼ nci þ ndi − 2. As shown in Fig. 2(c), for U=t ≈ 0.75,
when AFM order sets in, χc displays a sudden drop at low
temperatures from a finite value, indicative of a metal, to a
vanishingly small value, which is indicative of an insulator.
In Fig. 1, the color scale corresponds to the logarithm of χc,
clearly demonstrating a sharp transition from a metallic to
an insulating phase around U=t ≈ 0.75 at low temperatures
and a smoother crossover at higher temperatures. The black
dashed line denotes the contour χc ¼ 0.01. The fact that the
compressibility jumps sharply at low temperatures but
decreases smoothly at higher temperatures supports the
presence of a first-order transition between the SC phase
and the AFM insulating phase, ending in a critical endpoint
followed by a Widom crossover line, as is expected for a
Mott transition at finite temperatures [44]. The precise
location of the endpoint cannot be pinpointed with our
available resolution.
Electronic and magnetic spectra.—To further probe the

impact of the metal-to-insulator crossover in the phase
diagram of Fig. 1, we extracted the electronic Green’s
function G at long imaginary time τ, Gkðτ ¼ β=2Þ. Here,
β≡ 1=T is the inverse temperature. At zero temperature
and on the Fermi surface, the quantity Z̃k ¼ 2Gkðτ ¼ β=2Þ

(a) (b) (c)

FIG. 2. Thermodynamic observables in the vicinity of U=t ∼ 1. (a) AFM spin, (b) pair, and (c) charge susceptibilities (denoted by χs,
χp, and χc, respectively) for different temperatures as a function of U=t. The pair susceptibility peaks in the immediate vicinity of the
AFM transition. At low temperatures, within our resolution, we cannot separate the transition to the AFM phase from the crossover to
the insulating phase.
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is a proxy for the quasiparticle spectral weight [26,45],
being equal to 1 for a noninteracting system and 0 for an
insulator. Figure 3 presents Z̃k for representative values of
the interaction U and for a low temperature T=t ¼ 0.05. In
each panel, the upper right half shows the relative spectral
weight and the color scale extends to Z̃max, whereas the
lower left half shows the absolute spectral weight and the
color scale extends to 1.
Focusing first on the upper half of the panels, we note

two effects upon increasing U. At U=t ¼ 0.7, we see a
shrinking of the Fermi surface areas, reminiscent of the
so-called s�-Pomeranchuk effect in multiband systems
approaching an AFM instability [46,47]. At U=t ¼ 0.8
and U=t ¼ 1.0, we observe a Fermi surface reconstruction
typical of long-range AFM order, as resulting from the
folding of the Brillouin zone by the AFM wave vector
ðπ; πÞ. Focusing now on the lower half of the panels, we see
a strong reduction of the intensity of Z̃k as U increases,
signaling a sharp suppression of the quasiparticle spectral
weight. In particular, for U=t ¼ 1.0, the spectral weight has
decreased to the point of almost vanishing, such that, for
higher values ofU=t, a Fermi surface can be barely defined.
This loss of quasiparticle coherence is consistent with the
suppression in the charge compressibility seen in Fig. 2(c).
The reduction of the quasiparticle spectral weight has a

drastic effect on the magnetic fluctuation spectrum in
the paramagnetic state. Prior to the onset of AFM order,
the electrons are reasonably coherent, as shown in Fig. 3(a),
(b). The corresponding dynamic magnetic susceptibility at
the AFM wave vector χ−1s ðΩnÞ, is shown in Fig. 4(a) as a
function of the Matsubara frequency Ωn ¼ 2nπT. In this
regime, corresponding to the left of the AFM dome, the spin
dynamics is overdamped, as indicated by the linear depend-
ence χ−1s ðΩnÞ ∼ jΩnj. This is the expected behavior arising

from the decay of AFM fluctuations into collective particle-
hole excitations near the Fermi surface, called Landau
damping. Note that we do not expect signatures of the
superconducting gap to appear here, as even the first nonzero
Matsubara frequency is comparable to Tc. On the other hand,
for U=t ≥ 1.5, to the right of the AFM dome, the quadratic
behavior χ−1s ðΩnÞ ∼Ω2

n shown in Fig. 4(b) is typical of
ballistic spin dynamics, with AFM fluctuations propagating
without damping. The fact that the quasiparticle spectral
weight is strongly reduced for U=t > 0.75 suggests that this
absence of damping is a consequence of the suppression of
the decay channel of an AFM excitation into quasiparticles.
Discussion.—Having completely characterized the phase

diagram of the electronic two-band model shown in Fig. 1,
we now discuss its implications for our understanding of
the intertwining between AFM and SC in the intermediate
coupling regime. The appearance of an AFM dome can be
rationalized by interpolating the expected behaviors in the
metallic and insulating sides of the phase diagram. From a
weak-coupling perspective, because the electronlike and
holelike bands are not nested, the interaction strength must
overcome a threshold value for AFM order to onset. From a
strong-coupling perspective, the two-band model maps
onto an Ising model with a strong transverse field (see
Supplemental Material [34]), and as a result the ground
state is a featureless, insulating quantum paramagnet. What
is surprising, however, is the fact that the threshold value
for U=t at the lowest temperature probed coincides (within
our resolution) with the value that triggers a metal-to-
insulator transition, characterized by vanishing compress-
ibility and quasiparticle spectral weight. Additionally, we
note that the onset of AFM order is not due to Fermi surface
nesting, as numerical simulations of two electronlike band
dispersions (not shown) also reveal a magnetic dome at
similar values of U=t.

FIG. 3. Evolution of the quasiparticle spectral weight proxy, Z̃k,
with interaction strength. In the upper right half (lower left half) of
the panels, we plot Z̃k for T=t ¼ 0.05 in a color scale (gray scale)
from 0 to Z̃max (0 to 1). Note that the two halves are identical; we
use two different color schemes only to highlight the loss of spectral
weight across the magnetic transition. Here (a) and (b) correspond
to the region prior to the AFM transition, while (c) and (d) are after.
For small values of the interaction, the quasiparticle spectral weight
matches the noninteracting Fermi surface shown in Fig. 1. For
larger values, the Fermi surface shrinks and, beyondU=t ¼ 0.75, is
reconstructed, signaling the onset of AFM order with wave vector
Q ¼ ðπ; πÞ. To produce these figures, we combined simulations
from 16 different twisted boundary conditions.

(a) (b)

FIG. 4. Inverse dynamical spin susceptibility χ−1s ðΩnÞ in the
metallic and insulating paramagnetic regions. (a) In the regime
U=t ≤ 0.7 (i.e., to the left of the AFM dome), where the system is
metallic, the dependence on Ωn is roughly linear, χ−1ðΩnÞ ∝ Ωn,
indicating that the magnetic fluctuations are overdamped. (b) In
the regime U=t ≥ 1.5 (i.e., to the right of the AFM dome), where
the system is insulating, the magnetic fluctuations propagate
ballistically, χ−1ðΩnÞ ∝ Ω2

n.
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The numerical results suggest the presence of two
putative AFM quantum phase transitions near U=t ≈
0.75 and U=t ≈ 1.5. Of course, the AFM transition temper-
ature could remain nonzero beyond this range, since the
lowest temperature that we probe is T=t ¼ 0.025. Although
this makes it difficult to locate a possible quantum critical
point, the fact that the AFM susceptibility is strongly
suppressed for these two values of the interaction strength
[as shown in Fig. 2(a)] allows us to make a meaningful
comparison between them. The main difference is that
long-range superconductivity appears near U=t ¼ 0.75,
while not even weak SC fluctuations are observed near
U=t ¼ 1.5. Thus, while this result supports the point of
view that AFM fluctuations play an important role in
promoting high-temperature superconductivity—the high-
est Tc in our system is a few percent of t—it also makes it
clear that proximity to an AFM transition is by no means
enough for superconductivity to be triggered. On the
contrary, our analysis of the spin dynamics in Fig. 4 reveals
that overdamped (i.e., “slow”) fluctuations are much better
at promoting Cooper pairing than ballistic (i.e., “fast”)
fluctuations. This change in the character of the spin
dynamics, in turn, can be attributed to the strong suppres-
sion of the quasiparticle spectral weight shown in Fig. 3,
which effectively eliminates Landau damping. It is impor-
tant to note that, despite the quasiparticle spectral weight
being heavily suppressed, as long as it remains finite at
nonzero temperatures, superconductivity could in principle
still arise [48].
Conclusion.—In conclusion, we demonstrated that a

suitable two-band version of the Hubbard model can be
efficiently simulated via QMC without the fermionic sign
problem. The resulting phase diagram showcases various
ordered states typically found in quantum materials, such
as AFM, SC, and a correlated insulating phase. More
importantly, our results offer an unbiased view of the rich
interplay between these different degrees of freedom, dem-
onstrating that both AFM and SC are enhanced near the
metal-to-insulator transition in the intermediate-coupling
regime. Future investigations of this type of model would
be desirable to shed light on the fermionic properties near the
onset of the AFM order, particularly to elucidate whether
non-Fermi liquid behavior or pseudogap behavior is also
triggered by interband repulsive interactions.

We thank A. Chubukov, A. Klein, Z. Y. Meng, and O.
Vafek for fruitful discussions. M. H. C. and R. M. F. are
supported by the U.S. Department of Energy, Office of
Science, Basic Energy Sciences, Materials Science and
Engineering Division, under Award No. DE-SC0020045.
R. M. F. also acknowledges partial support from the
Research Corporation for Science Advancement via the
Cottrell Scholar Award. X.W. acknowledges financial
support from National MagLab, which is funded by the
National Science Foundation (DMR-1644779) and the
state of Florida. Y. S. was supported by the Department

of Energy, Office of Basic Energy Sciences, under Contract
No. DE-AC02-76SF00515 at Stanford, by the Gordon and
Betty Moore Foundation’s EPiQS Initiative through Grant
Nos. GBMF4302 and GBMF8686, and by the Zuckerman
STEM Leadership Program. E. B. was supported by the
European Research Council (ERC) under grant HQMAT
(Grant No. 817799), the US-Israel Binational Science
Foundation (BSF), the Minerva Foundation, and a research
grant from Irving and Cherna Moskowitz. We thank the
Minnesota Supercomputing Institute (MSI) at the
University of Minnesota, where a part of the numerical
computations was performed.

*Corresponding author.
rfernand@umn.edu

†Also at Stanford Institute for Materials and Energy
Sciences, SLAC National Accelerator Laboratory and
Stanford University, Menlo Park, California 94025, USA.

‡M. H. C. and X.W. contributed equally to this work.
[1] B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and

J. Zaanen, From quantum matter to high-temperature super-
conductivity in copper oxides, Nature (London) 518, 179
(2015).

[2] Z. P. Yin, K. Haule, and G Kotliar, Kinetic frustration and the
nature of the magnetic and paramagnetic states in iron
pnictides and iron chalcogenides, Nat. Mater. 10, 932 (2011).

[3] P. Dai, J. Hu, and E. Dagotto, Magnetism and its
microscopic origin in iron-based high-temperature super-
conductors, Nat. Phys. 8, 709 (2012).

[4] A. Georges, L. de’ Medici, and J. Mravlje, Strong
correlations from hund’s coupling, Annu. Rev. Condens.
Matter Phys. 4, 137 (2013).

[5] K. Haule and G. Kotliar, Strongly correlated superconduc-
tivity: A plaquette dynamical mean-field theory study,
Phys. Rev. B 76, 104509 (2007).

[6] H. Park, K. Haule, and G. Kotliar, Cluster Dynamical Mean
Field Theory of the Mott Transition, Phys. Rev. Lett. 101,
186403 (2008).

[7] E. Gull, P. Werner, X. Wang, M. Troyer, and A. J. Millis,
Local order and the gapped phase of the Hubbard model: A
plaquette dynamical mean-field investigation, Europhys.
Lett. 84, 37009 (2008).

[8] C. Weber, K. Haule, and G. Kotliar, Strength of correlations in
electron- and hole-doped cuprates, Nat. Phys. 6, 574 (2010).

[9] S. R. White, Density Matrix Formulation for Quantum
Renormalization Groups, Phys. Rev. Lett. 69, 2863 (1992).

[10] R. M. Noack, S. R. White, and D. J. Scalapino, Correlations
in a Two-Chain Hubbard Model, Phys. Rev. Lett. 73, 882
(1994).

[11] H.-C. Jiang and T. P. Devereaux, Superconductivity in the
doped hubbard model and its interplay with next-nearest
hopping t’, Science 365, 1424 (2019).

[12] R. Blankenbecler, D. J. Scalapino, and R. L. Sugar,
Monte carlo calculations of coupled boson-fermion systems.
I, Phys. Rev. D 24, 2278 (1981).

[13] T. A. Maier, M. Jarrell, T. C. Schulthess, P. R. C. Kent, and
J. B. White, Systematic Study of d-Wave Superconductivity

PHYSICAL REVIEW LETTERS 125, 247001 (2020)

247001-5

https://doi.org/10.1038/nature14165
https://doi.org/10.1038/nature14165
https://doi.org/10.1038/nmat3120
https://doi.org/10.1038/nphys2438
https://doi.org/10.1146/annurev-conmatphys-020911-125045
https://doi.org/10.1146/annurev-conmatphys-020911-125045
https://doi.org/10.1103/PhysRevB.76.104509
https://doi.org/10.1103/PhysRevLett.101.186403
https://doi.org/10.1103/PhysRevLett.101.186403
https://doi.org/10.1209/0295-5075/84/37009
https://doi.org/10.1209/0295-5075/84/37009
https://doi.org/10.1038/nphys1706
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevLett.73.882
https://doi.org/10.1103/PhysRevLett.73.882
https://doi.org/10.1126/science.aal5304
https://doi.org/10.1103/PhysRevD.24.2278


in the 2d Repulsive Hubbard Model, Phys. Rev. Lett. 95,
237001 (2005).

[14] T. A. Maier, M. Jarrell, and D. J. Scalapino, Pairing inter-
action in the two-dimensional Hubbard model studied with a
dynamic cluster quantum monte carlo approximation,
Phys. Rev. B 74, 094513 (2006).

[15] C. N. Varney, C.-R. Lee, Z. J. Bai, S. Chiesa, M. Jarrell, and
R. T. Scalettar, Quantum monte carlo study of the two-
dimensional fermion hubbard model, Phys. Rev. B 80,
075116 (2009).

[16] J. P. F. LeBlanc et al., Solutions of the Two-Dimensional
Hubbard Model: Benchmarks and Results from a Wide
Range of Numerical Algorithms, Phys. Rev. X 5, 041041
(2015).

[17] T. Ayral and O. Parcollet, Mott physics and spin fluctuations:
A unified framework, Phys. Rev. B 92, 115109 (2015).

[18] B.-X. Zheng, C.-M. Chung, P. Corboz, G. Ehlers, M.P. Qi,
R.M. Noack, H. Shi, S. R. White, S. Zhang, and G. K.-L.
Chan, Stripe order in the underdoped region of the two-
dimensional Hubbard model, Science 358, 1155 (2017).

[19] E.W. Huang, C. B. Mendl, S. Liu, S. Johnston, H.-C. Jiang,
B. Moritz, and T. P. Devereaux, Numerical evidence of
fluctuating stripes in the normal state of high-tc cuprate
superconductors, Science 358, 1161 (2017).

[20] E. Y. Loh, J. E. Gubernatis, R. T. Scalettar, S. R. White, D. J.
Scalapino, and R. L. Sugar, Sign problem in the numerical
simulation of many-electron systems, Phys. Rev. B 41, 9301
(1990).

[21] C. Wu and S.-C. Zhang, Sufficient condition for absence of
the sign problem in the fermionic quantum monte carlo
algorithm, Phys. Rev. B 71, 155115 (2005).

[22] A. Abanov, A. V. Chubukov, and J. Schmalian, Quantum-
critical theory of the spin-fermion model and its application
to cuprates: Normal state analysis, Adv. Phys. 52, 119
(2003).

[23] E. Berg, M. A. Metlitski, and S. Sachdev, Sign-problem–
free quantum monte carlo of the onset of antiferromagnet-
ism in metals, Science 338, 1606 (2012).

[24] Y. Schattner, S. Lederer, S. A. Kivelson, and E. Berg, Ising
Nematic Quantum Critical Point in a Metal: A Monte Carlo
Study, Phys. Rev. X 6, 031028 (2016).

[25] X. Y. Xu, K. Sun, Y. Schattner, E. Berg, and Z. Y. Meng,
Non-Fermi Liquid at ð2þ 1ÞD Ferromagnetic Quantum
Critical Point, Phys. Rev. X 7, 031058 (2017).

[26] M. H. Gerlach, Y. Schattner, E. Berg, and S. Trebst,
Quantum critical properties of a metallic spin-density-wave
transition, Phys. Rev. B 95, 035124 (2017).

[27] X. Wang, Y. Schattner, E. Berg, and R. M. Fernandes,
Superconductivity mediated by quantum critical anti-
ferromagnetic fluctuations: The rise and fall of hot spots,
Phys. Rev. B 95, 174520 (2017).

[28] S. Lederer, Y. Schattner, E. Berg, and S. A. Kivelson,
Superconductivity and non-fermi liquid behavior near a
nematic quantum critical point, Proc. Natl. Acad. Sci.
U.S.A. 114, 4905 (2017).

[29] E. Berg, S. Lederer, Y. Schattner, and S. Trebst, Monte carlo
studies of quantum critical metals, Annu. Rev. Condens.
Matter Phys. 10, 63 (2019).

[30] Z.-X. Li and H. Yao, Sign-problem-free fermionic quantum
monte carlo: Developments and applications, Annu. Rev.
Condens. Matter Phys. 10, 337 (2019).

[31] Y. Motome and M. Imada, A quantum monte carlo method
and its applications to multi-orbital Hubbard models,
J. Phys. Soc. Jpn. 66, 1872 (1997).

[32] J. Wu, P. Phillips, and A. H. Castro Neto, Theory of the
Magnetic Moment in Iron Pnictides, Phys. Rev. Lett. 101,
126401 (2008).

[33] A. V. Chubukov, D. V. Efremov, and I. Eremin, Magnetism,
superconductivity, and pairing symmetry in iron-based
superconductors, Phys. Rev. B 78, 134512 (2008).

[34] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.125.247001 for further
details on the numerical analysis and Refs. [35–42].

[35] F. F. Assaad, Quantum Monte Carlo Methods on
Lattices: The Determinantal Method, Publication Series of
the John von Neumann Institute for Computing (NIC) (2002).

[36] J. Gubernatis, N. Kawashima, and P. Werner, Quantum
Monte Carlo Methods (Cambridge University Press,
Cambridge, England, 2016).

[37] M. E. Fisher and M. N. Barber, Scaling Theory for Finite-
Size Effects in the Critical Region, Phys. Rev. Lett. 28, 1516
(1972).

[38] K. Binder and D. P. Landau, Finite-size scaling at first-order
phase transitions, Phys. Rev. B 30, 1477 (1984).

[39] A. M. Ferrenberg and R. H. Swendsen, New Monte Carlo
Technique for Studying Phase Transitions, Phys. Rev. Lett.
61, 2635 (1988).

[40] D. J. Scalapino, S. R. White, and S. Zhang, Insulator, metal,
or superconductor: The criteria, Phys. Rev. B 47, 7995 (1993).

[41] A.W. Sandvik, Computational studies of quantum spin
systems, AIP Conf. Proc. 1297, 135 (2010).

[42] M. S. L. du Croo de Jongh and J. M. J. van Leeuwen,
Critical behavior of the two-dimensional Ising model in a
transverse field: A density-matrix renormalization calcula-
tion, Phys. Rev. B 57, 8494 (1998).

[43] F. P. Toldin, M. Hohenadler, F. F. Assaad, and I. F. Herbut,
Fermionic quantum criticality in honeycomb and π-flux
Hubbard models: Finite-size scaling of renormalization-
group-invariant observables from quantum monte carlo,
Phys. Rev. B 91, 165108 (2015).

[44] H. Terletska, J. Vučičević, D. Tanasković, and V.
Dobrosavljević, Quantum Critical Transport Near the Mott
Transition, Phys. Rev. Lett. 107, 026401 (2011).

[45] N. Trivedi and M. Randeria, Deviations from Fermi-Liquid
Behavior above Tc in 2d Short Coherence Length Super-
conductors, Phys. Rev. Lett. 75, 312 (1995).

[46] L. Ortenzi, E. Cappelluti, L. Benfatto, and L. Pietronero,
Fermi-Surface Shrinking and Interband Coupling in
Iron-Based Pnictides, Phys. Rev. Lett. 103, 046404 (2009).

[47] A. V. Chubukov, M. Khodas, and R. M. Fernandes, Magnet-
ism, Superconductivity, and Spontaneous Orbital Order in
Iron-Based Superconductors: Which Comes First and
Why?, Phys. Rev. X 6, 041045 (2016).

[48] Y. Wang, A. Abanov, B. L. Altshuler, E. A. Yuzbashyan,
and A. V. Chubukov, Superconductivity Near a Quantum-
Critical Point: The Special Role of the First Matsubara
Frequency, Phys. Rev. Lett. 117, 157001(2016).

PHYSICAL REVIEW LETTERS 125, 247001 (2020)

247001-6

https://doi.org/10.1103/PhysRevLett.95.237001
https://doi.org/10.1103/PhysRevLett.95.237001
https://doi.org/10.1103/PhysRevB.74.094513
https://doi.org/10.1103/PhysRevB.80.075116
https://doi.org/10.1103/PhysRevB.80.075116
https://doi.org/10.1103/PhysRevX.5.041041
https://doi.org/10.1103/PhysRevX.5.041041
https://doi.org/10.1103/PhysRevB.92.115109
https://doi.org/10.1126/science.aam7127
https://doi.org/10.1126/science.aak9546
https://doi.org/10.1103/PhysRevB.41.9301
https://doi.org/10.1103/PhysRevB.41.9301
https://doi.org/10.1103/PhysRevB.71.155115
https://doi.org/10.1080/0001873021000057123
https://doi.org/10.1080/0001873021000057123
https://doi.org/10.1126/science.1227769
https://doi.org/10.1103/PhysRevX.6.031028
https://doi.org/10.1103/PhysRevX.7.031058
https://doi.org/10.1103/PhysRevB.95.035124
https://doi.org/10.1103/PhysRevB.95.174520
https://doi.org/10.1073/pnas.1620651114
https://doi.org/10.1073/pnas.1620651114
https://doi.org/10.1146/annurev-conmatphys-031218-013339
https://doi.org/10.1146/annurev-conmatphys-031218-013339
https://doi.org/10.1146/annurev-conmatphys-033117-054307
https://doi.org/10.1146/annurev-conmatphys-033117-054307
https://doi.org/10.1143/JPSJ.66.1872
https://doi.org/10.1103/PhysRevLett.101.126401
https://doi.org/10.1103/PhysRevLett.101.126401
https://doi.org/10.1103/PhysRevB.78.134512
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.247001
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.247001
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.247001
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.247001
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.247001
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.247001
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.247001
https://doi.org/10.1103/PhysRevLett.28.1516
https://doi.org/10.1103/PhysRevLett.28.1516
https://doi.org/10.1103/PhysRevB.30.1477
https://doi.org/10.1103/PhysRevLett.61.2635
https://doi.org/10.1103/PhysRevLett.61.2635
https://doi.org/10.1103/PhysRevB.47.7995
https://doi.org/10.1063/1.3518900
https://doi.org/10.1103/PhysRevB.57.8494
https://doi.org/10.1103/PhysRevB.91.165108
https://doi.org/10.1103/PhysRevLett.107.026401
https://doi.org/10.1103/PhysRevLett.75.312
https://doi.org/10.1103/PhysRevLett.103.046404
https://doi.org/10.1103/PhysRevX.6.041045
https://doi.org/10.1103/PhysRevLett.117.157001

