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The presence of global conserved quantities in interacting systems generically leads to diffusive
transport at late times. Here, we show that systems conserving the dipole moment of an associated global
charge, or even higher-moment generalizations thereof, escape this scenario, displaying subdiffusive decay
instead. Modeling the time evolution as cellular automata for specific cases of dipole- and quadrupole
conservation, we numerically find distinct anomalous exponents of the late time relaxation. We explain
these findings by analytically constructing a general hydrodynamic model that results in a series of
exponents depending on the number of conserved moments, yielding an accurate description of the scaling
form of charge correlation functions. We analyze the spatial profile of the correlations and discuss potential
experimentally relevant signatures of higher-moment conservation.
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Introduction.—Thermal equilibrium of generic systems
is characterized by a finite number of conserved quantities,
such as energy, particle number, or charge. A coarse
grained nonequilibrium time evolution that irreversibly
leads to such an equilibrium state is therefore expected
to be dominated by transport of these quantities at late
times, smoothing out inhomogeneities of the initial state
[1]. This framework also extends to closed, interacting
quantum systems, where the corresponding timescale of
transport, separating “early” and “late” times, is usually
marked by the onset of local thermalization. A phenom-
enological description of the ensuing dynamics can then be
given in terms of a classical hydrodynamic description,
with quantum properties merely entering the effective
diffusion constant [2–10].
A particularly intriguing set of conserved quantities

arises in the presence of a global U(1) charge together
with the conservation of one or several of its higher
moments, such as dipole or quadrupole moment. These
higher-moment conserving models have attracted much
attention in the context of fractons [11–18], and are
realizable in synthetic quantum matter [19] or solid state
systems [20,21]. In particular, the intertwined relation
between the internal charge conservation law and its dipole
moment has recently been shown to have significant impact
on nonequilibrium properties [22–29]. In the most severe
cases, for short-ranged interactions and low spin represen-
tations, the system fails to thermalize due to a strong
fragmentation of the many-body Hilbert space into expo-
nentially many disconnected sectors [23,24], giving rise to
statistically localized integrals of motion [29].
In this Letter, we study late time transport in ergodic

models of dipole- and even higher-moment conserving 1D

systems. We avoid strong Hilbert space fragmentation
by including longer-range interactions and higher spin
representations. Building on the intuition of an effective
classical description in the regime of incoherent transport,
we employ a cellular automaton approach to numerically
study the longtime dynamics (see, e.g., [30–32] for related
approaches). We find anomalously slow, subdiffusive trans-
port of the underlying charges, described by a cascade of
exponents depending on the highest conserved moment.We
further develop a general analytic hydrodynamic approach,
valid for arbitrary conserved multipole moments that is in
full agreement with our numerical results. Moreover, we
discuss experimental characteristics of higher-moment con-
servation and the consistency of our findings with quantum
dynamics.
Higher-moment conserving models.—We start by con-

structing generic Hamiltonians conserving arbitrary
moments of the charge. These will serve as input for the
definition of suitable automata dynamics, as well as the
derivation of an effective hydrodynamic description.
The construction of such models is best understood recur-
sively, starting from a simple Hamiltonian of the form

Ĥ ¼ Ĥð0Þ
r¼2 þ Ĥz, with Ĥ

ð0Þ
r¼2 ¼

P
xðŜþx Ŝ−xþ1 þ H:c:Þ hosting

local XY-type terms of range r ¼ 2 that conserve the total
charge Qð0Þ ¼ P

x Ŝ
z
x, and Ĥz containing arbitrary local

terms diagonal in the Ŝz basis that render the model non-
integrable. The Ŝ�x , Ŝzx are spin operators in a given

representation S. Here, an elementary term hð0Þ2 ðxÞ≡
Ŝþx Ŝ

−
xþ1 can be interpreted as the creation of a dipole against

some background. A new term that additionally conserves
the dipole moment Qð1Þ ¼ P

x xŜ
z
x can then be obtained by

simplymultiplying this operatorwith itsHermitian conjugate
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at some shifted position, e.g.,hð1Þ3 ðxÞ¼ ½hð0Þ2 ðxÞ�†hð0Þ2 ðxþ1Þ,
yielding Ĥð1Þ

3 ¼ P
x Ŝ

−
x ðŜþxþ1Þ2Ŝ−xþ2 þ H:c:, amodel that has

been studied in the context of Hilbert space fragmentation
[23–29].
The above recursion can be iterated to obtain models

conserving arbitrary moments of the charge

QðmÞ ¼
X
x

xmŜzx: ð1Þ

Formally, we consider an mth-moment conserving

Hamiltonian of range r in the form ĤðmÞ
r ¼P

xh
ðmÞ
r ðxÞ þ

H:c:, whose local terms can be expanded as

hðmÞ
r ðxÞ ¼ ⊗

r−1

i¼0
ðŜsgn½σmðiÞ�xþi ÞjσmðiÞj; with σmðiÞ ∈ Z; ð2Þ

where by definition σmð0Þ ≠ 0, σmðr − 1Þ ≠ 0, and sgn½·� ∈
fþ;−g is the signum function. For the XY terms,
σ0ð0Þ ¼ −σ0ð1Þ ¼ 1. Again, arbitrary terms diagonal in
Ŝz could be added to Eq. (2) without affecting the
conservation laws. Analogous to the argument above, given

hðm−1Þ
r ðxÞ, we can then construct a ðrþ lÞ-range term that

additionally conserves the mth moment by imposing the
recursive relation

σmðiÞ ¼ −σm−1ðiÞ þ σm−1ði − lÞ; ð3Þ

on the exponents of the spin ladder operators. Equation (3)

reflects the construction of ĤðmÞ
rþl via shifting an elementary

m pole by l sites. As illustrated in Fig. 1(a), the elementary

m pole configurations have vanishing lower moments and a
spatially independent mth moment, similar to usual
charges. However, their number is not conserved.
We notice that Eq. (3) can be rephrased as a discrete

lattice derivative of spacing l, σmðiÞ ¼ −Δx½σm−1�ðiÞ,
which implies σmðiÞ ¼ ð−ΔxÞm½σ0�ðiÞ. If the elementary
XY terms are interpreted as a finite difference with spacing
l ¼ 1, ð−ΔxÞ½f�ð0Þ ¼

P
i σ0ðiÞfðiÞ with some lattice

function fðiÞ, the exponents σmðiÞ effectively correspond
to a lattice discretization of the ðmþ 1Þst derivative

ð−ΔxÞmþ1½f�ð0Þ ¼
X
i

σmðiÞfðiÞ: ð4Þ

Using the spin commutation relations and Eq. (4), we see

that ½QðnÞ;hðmÞ
r ðxÞ� ¼P

i σmðiÞðxþ iÞn¼ð−ΔxÞmþ1½xn� ¼ 0

for n ≤ m, i.e., all moments Qðn≤mÞ are indeed conserved.
The same holds for longer-range Hamiltonians, using
alternative discretization schemes of the involved deriva-
tives. We note that this is a discretized version of the field
theory construction in Ref. [16].
Cellular automaton approach.—Studying the full quan-

tum evolution of Eq. (2) is challenging. However, we can
make progress by considering a classical automaton time
evolution that respects the same conservation laws of
Eq. (1), which are the crucial properties concerning the late
time dynamics. The discrete automaton evolution consists of
a sequential application of local updates mapping z-basis
product states onto z-basis product states. The updates are
designed tomimic the action of theHamiltonian by updating
between local strings of spins sðxÞ ¼ ðsx;…; sxþr−1Þ, with
si ∈ f−S;…; Sg, that are connected by the local terms of
Eq. (2) and thus feature the same conserved charge
moments, similar to Refs. [30,32]. The time evolution
can then be represented by a classically simulable circuit,
see Fig. 2(a). Furthermore, by assigning a finite acceptance
probability to each update, we simulate a stochastic automa-
ton [33], enabling us to meaningfully study dynamics
starting from fixed initial states. More details can be found
in the Supplemental Material [34]. We emphasize that the
details of the implementation, including its stochastic
nature, are not essential to the hydrodynamics studied in
the following.
Hydrodynamics.—To understand the dynamics of

charges at late times, the main quantity studied within our
numerical approach are the (infinite temperature) correlation
functions

CðmÞðx; tÞ ¼ hŜzxðtÞŜz0ð0Þi; ð5Þ

and particularly the return probabilityCðmÞð0; tÞ, where h…i
denotes an average of ŜzxðtÞŜz0ð0Þ over randomly chosen
initial states of the automaton dynamics. For concreteness,
we study a dipole conserving model with S ¼ 1 including
interaction terms of Eq. (2) of ranges r ¼ 3 and r ¼ 4 [38],

(b)

(a)

FIG. 1. Higher moment conservation laws. (a) Recursive con-
struction: A charge-conserving move (m ¼ 0) creates a local
dipole, which in turn is a charge-neutral dynamical object of a
dipole-conserving model (m ¼ 1). This process is iterated to
conserve higher moments. (b) The late time dynamics of charges
exhibits subdiffusive decay, with algebraic exponents depending
on the highest conserved charge moment (here, m ¼ 1).
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as well as a quadrupole conserving model with larger spin
representationS ¼ 4 including ranges r ¼ 4 and r ¼ 5, both
on system sizes up to L ¼ 104. While generally the hydro-
dynamic tails for given m are expected to be universal for
sufficiently ergodic systems, in numerical practice, larger r
and S will provide faster convergence to this longtime
behavior. As the dynamics is expected to become slower
upon increasing m, i.e., the number of constraints, we
choose a larger spin representation S ¼ 4 in the quadrupole
case to allow for a more accurate determination of algebraic
exponents.
We show the results of the automaton evolution for the

return probability CðmÞð0; tÞ in Fig. 2(b). In contrast to
ordinary diffusive systems which possess the scaling
Cð0Þð0; tÞ ∼ t−1=2 [1], we numerically estimate the algebraic
late time decay exponents to be Cð1Þð0; tÞ ∼ t−0.248 ≈ t−1=4

in the dipole-conserving model, and Cð2Þð0; tÞ ∼ t−0.170 ≈
t−1=6 for the conservation of quadrupole moment.
Consistent with these results, we observe a subdiffusive
decay of Cð1Þð0; tÞ for a dipole-conserving S ¼ 1=2 quan-
tum spin chain as shown in the inset of Fig. 2(b) (see the
Supplemental Material [34] for more details on the quan-
tum case). This signals significant deviations from generic
diffusion, induced by the higher-moment conservation
laws Eq. (1).
To understand how this slow anomalous diffusion can

emerge from a classical hydrodynamic description of a
quantum evolution, we consider the Heisenberg evolution
equation of the charge density Ŝzx for the previously

introducedmodels. This yields ðd=dtÞŜzx¼ði=ℏÞ½ĤðmÞ
r ;Ŝzx�¼

ð−ΔxÞmþ1ΩðmÞ
x using Eq. (4), withΩðmÞ

x ¼ −ði=ℏÞ½hðmÞ
r ðxÞ−

H:c:�, which takes the form of a generalized “multipole
current” ofm poles (in fact, this is a one-dimensional version
of generalized currents appearing in fractonic systems [39]).

This form of the time evolution applies to arbitrary
Hamiltonians conserving the mth moment of the charge,

with microscopic details only entering ΩðmÞ
x . Imposing a

continuity equation for the charge density ðd=dtÞŜzx ¼
ð−ΔxÞJðmÞ

x , we obtain the form of the charge current

JðmÞ
x ¼ ð−ΔxÞmΩðmÞ

x , resulting, e.g., in the familiar Jð0Þx ¼
Ωð0Þ

x for the diffusive case. To arrive at a differential
equation, we consider the evolution of expectation
values and go to the limit of long wavelengths (Δx → ∂x)
assuming large enough variation lengths in space, such

that ðd=dtÞhŜzxi ¼ ð−∂xÞmþ1hΩðmÞ
x i.

To obtain a closed equation for the now coarse-grained
charge density hŜzxi ¼ hŜzxiðtÞ, we require a hydrodynamic
assumption which relates the multipole current to the
derivatives of the charge density (see, e.g., Ref. [40]). We

therefore expand hΩðmÞ
x i ¼ −Dð∂xÞlðmÞhŜzxi, and our task is

to find the lowest possible (i.e., most scaling relevant)
lðmÞ ∈ N such that D ≠ 0 is consistent with the conserva-
tion of all momentsQðn≤mÞ (we provide a scaling analysis in
the Supplemental Material [34] that shows that nonlinear

terms in the expansion of hΩðmÞ
x i are irrelevant).

For charge-conserving interacting quantum systems
(m ¼ 0), known to generically exhibit diffusive transport
at late times [2–10], we should obtain Fick’s law

hΩð0Þ
x i ¼ hJð0Þx i ¼ −D∂xhŜzxi, i.e., lð0Þ ¼ 1, resulting in

the usual diffusion equation for hŜzxi. However, general
solutions of the diffusion equation break higher-moment
conservation. This is seen most easy for the example of a
melting domain wall, which exhibits a net current of
charge, violating dipole conservation.
How can we thus generalize Fick’s law to higher

conserved moments? We notice that in a closed system

(c)

(b)

(a)

(d)

FIG. 2. Hydrodynamics. (a) Illustration of an automaton circuit, for m ¼ 1 using dipole-conserving updates of range four between
product states (spin representation S ¼ 1). With some finite probability, updates are either applied (yellow gates) not (gray gates),
yielding effectively stochastic updates. (b) Return probability CðmÞð0; tÞ for dipole- and quadrupole conservation. The longtime behavior
approaches anm-dependent algebraic decay ∼t−1=2ðmþ1Þ. The numerical values of the exponents where extracted from fits over the latter
three time decades (dashed lines). Inset: return probability of a small system size, dipole-conserving quantum model (spin S ¼ 1=2),
consistent with subdiffusive decay. (c),(d) Scaling collapse for m ¼ 1 and m ¼ 2 according to the long wavelength description Eq. (8).
In addition to the numerical data, the fundamental solution of Eq. (8) (dashed line) and the corresponding Gaussian expansion (see main
text) up to order n ¼ 4 (circles) are shown. The system size is L ¼ 104 and correlations were averaged over at least 103 random initial
states in all panels.
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with open boundary conditions and in the absence of sinks
or sources, the current hΩðmÞ

x ieq ¼ hΩðmÞ
x iðt → ∞Þ ¼ 0 is

expected to vanish in equilibrium. Combining this con-

dition with hΩðmÞ
x i ¼ −Dð∂xÞlðmÞhŜzxi leads to the equilib-

rium charge distribution

hŜzxieq ¼ a0þa1xþ���þalðmÞ−1xlðmÞ−1¼
XlðmÞ−1

s¼0

asxs: ð6Þ

Equation (6) is a polynomial of degree lðmÞ − 1 and
contains a number lðmÞ of independent constants as which
characterize the equilibrium state. On the other hand,
since we assumed conservation of all moments Qðn≤mÞ,
we know that equilibrium has to be characterized by mþ 1
independent parameters. This immediately determines
lðmÞ ¼ mþ 1, and the natural generalization of Fick’s

law is thus given by hΩðmÞ
x i ¼ −Dð∂xÞmþ1hŜzxi. This

coincides with the intuition of the finite difference con-

struction of ΩðmÞ
x : the dynamics balances out inhomoge-

neities of the mth derivative of the charge density.
Inserting this relation back into the evolution equation

for the charge density, we finally arrive at the generalized
hydrodynamic equation

d
dt

hŜzxi ¼ −Dð−1Þmþ1ð∂xÞ2ðmþ1ÞhŜzxi; ð7Þ

valid for systems conserving all multipole moments
up to and including m. We emphasize that our derivation
not only predicts the hydrodynamic equation (7), but
also the expected equilibrium distribution equation (6) in
closed systems, where the corresponding constants as ¼
asðQðn≤mÞÞ are uniquely fixed by the charge moments
Qðn≤mÞ of the initial state. In systems of size L they go as
jasj ∼OðL−sÞ, but are manifest in, e.g., observables
involving macroscopic distances like hŜzLi − hŜz0i. The
prediction Eq. (6) can be verified numerically in small
systems by monitoring the charge distribution resulting
from a fixed initial state at very late times. Figure 3(a)
shows a chosen initial charge distribution in a system of
size L ¼ 20, as well as the late time distributions obtained
from evolving the system using both dipole- and quadru-
pole-conserving automata. The resulting distributions are in
very good agreement with the predicted polynomials of
Eq. (6), validating our approach.
We further notice that while usually, the hydrodynamic

description of a system conserving mþ 1 quantities is
given by a set of mþ 1 coupled equations for the
associated densities and currents [1,41,42], the present
systems are described by a single equation (7) for the
charge density. This is due to the hierarchical structure of
the conservation laws Eq. (1) that specify all QðmÞ in terms
of the fundamental charges of the theory.

Analytical solution.—It is worthwhile to consider the
solutions of Eq. (7) in more detail. The normalized
fundamental solution is of the form

GðmÞðx; tÞ ¼ 1

ðDtÞ1=2ðmþ1Þ F
ðmÞ

�
x2ðmþ1Þ

t

�
; ð8Þ

where FðmÞ is a universal scaling function which can be
written in terms of generalized hypergeometric functions
[43]. The time evolution of a charge density profile starting
from GðmÞðx; 0Þ ¼ δðxÞ is described by Eq. (8), and is thus
expected to coincide with the correlator CðmÞðx; tÞ by
standard linear response theory [1]. Figures 2(c) and 2(d)
show that this is indeed the case, displaying full agreement
with our numerical results for both m ¼ 1, 2 upon fitting
the only free parameter D. In particular, as demonstrated in
Figs. 2(c) and 2(d), CðmÞðx; tÞ accurately follows the scaling
collapse predicted by Eq. (8).
For m ¼ 0, Eq. (7) reduces to the usual diffusion

equation and Cð0Þðx; tÞ is a Gaussian probability distribu-
tion describing the movement of an initially localized
excitation through the system [1,44]. For m ≥ 1, as shown
in Fig. 2 and more generally clear from a vanishing second-
moment hx2iGðmÞ ¼ R

dxx2GðmÞðx; tÞ ¼ 0, CðmÞðx; tÞ can-
not be interpreted as a probability distribution. Instead, the
associated oscillations in the profile of CðmÞðx; tÞ form a
characteristic signature of higher-moment conservation that
can potentially also be observed in quench experiments of
domain wall initial states, see Fig. 3(b).
Finally, we notice that the central peak of CðmÞðx; tÞ

in Figs. 2(c) and 2(d) is well approximated by a

(a) (b)

FIG. 3. Implications of higher-moment conservation. (a) In a
finite size system with open boundary conditions (gray dashed
lines), the charge density relaxes to an equilibrium distribution
that is a polynomial of order m (here, S ¼ 3). The black
dashed lines are the analytical predictions from Eq. (6).
(b) The melting of a domain wall in a dipole conserving system
for sufficiently large spin (here, S ¼ 2) appears as the cumulative
distribution function of Cð1Þðx; tÞ, with characteristic charge
density oscillations.
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Gaussian gðx; tÞ ¼ exp ð−x2=σ2ðtÞÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
πσ2ðtÞ

p
with σðtÞ ¼

ðDtÞ1=2ðmþ1Þ. The additional dressing density modulations
can be understood heuristically if we interpret the Gaussian
distribution gðx; tÞ as describing the movement of an
excitation through the system as part of m poles.
Conservation of Qðm>0Þ implies that a surrounding cloud
of opposite charge has to be dragged along, see Fig. 1(b).
The effective length scale for this process is given
by σðtÞ. This intuition can be formalized by making an
ansatz CðmÞðx;tÞ¼c0gðx;tÞ−c2fg½xþσðtÞ�þg½x−σðtÞ�g≈
gðx;tÞ½c0−4c2x2=σðtÞ2�. Thus, a positive charge moving
to x� σðtÞ implies an increased likelihood of simultane-
ously finding a negative charge at x. Generalizing this
physically motivated ansatz, we can expand CðmÞðx; tÞ ¼
gðx; tÞPn c

ðmÞ
2n ½−x2=σ2ðtÞ�n. Figures 2(c) and 2(d) show

excellent agreement already at low orders of the expansion,
where each term provides an additional oscillation in the
spatial profile of CðmÞðx; tÞ.
Conclusions and outlook.—We have studied the long-

time dynamics of higher-moment conserving models,
obtaining a generalized hydrodynamic equation relevant
for fractonic systems that leads to subdiffusive decay of
charge correlations. We emphasize that for dipole con-
servation, our results provide a postdiction of the sub-
diffusive scaling experimentally observed in Ref. [19],
where an initially prepared k-wave density mode of
interacting fermions was found to decay as ∼ expð−k4tÞ
in the presence of a strong, linearly tilted potential. The
linear potential couples directly to the center of massP

x xn̂x (see also [45]) and can thus be thought of as
inducing an effective dipole conservation on long length
scales. The observed decay agrees with Eq. (7) when
written in Fourier space. In analogy, the present analysis
suggests that effective quadrupole conservation may be
obtained by application of a harmonic potential.
In addition to the subdiffusive decay of the return

probability, we have identified oscillations in the spatial
density profile both for delta and domain wall initial
conditions as characteristic properties of higher-moment
conservation. Such oscillations should be detectable in
quantum quench experiments. Furthermore, higher-
moment conservation leads to a modified scaling of the
full-width-half-maximum of the Lorentzian line shape as
∼k2ðmþ1Þ in Fourier space, which could be detectable in
scattering experiments [46]. Finally, we expect our results
to reflect the longtime dynamics of closed quantum systems
as indicated by investigations on small system sizes, see
Supplemental Material [34]. Understanding the full impact
of higher-moment conservation laws on the dynamics of
quantum systems, in particular in the presence of energy
conservation, remains an objective for future study.
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Note added.—While finalizing this manuscript, we became
aware of a related work by A. Gromov, A. Lucas, and R. M.
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Khemani, and D. Huse which appeared in the previous
arXiv posting [48].
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