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We study two-component (or pseudospin-1=2) bosons with pair hopping interactions in synthetic
dimension, for which a feasible experimental scheme on a square optical lattice is also presented. Previous
studies have shown that two-component bosons with on-site interspecies interaction can only generate
nontrivial interspecies paired superfluid (super-counter-fluidity or pair-superfluid) states. In contrast, apart
from interspecies paired superfluid, we reveal two new phases by considering this additional pair hopping
interaction. These novel phases are intraspecies paired superfluid (molecular superfluid) and an exotic
noninteger Mott insulator which shows a noninteger atom number at each site for each species, but an
integer for total atom number.
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Ultracold quantum gases are highly controllable systems,
in which various novel interaction and detection techniques
can be realized, and the extreme physical parameter regimes
can be reached [1–6]. Thus, ultracold quantum gas systems
have been used to simulate quantummany-body systems and
provide an ideal platform to discover novel quantum states.
In bosonic systems, there are two kinds of boson pair
condensation states with either the intraspecies pairing [7] or
the interspecies pairing [8]. The interspecies paired super-
fluid state has been proposed in a two-component Bose-
Hubbard model with on-site interspecies interaction [8–17],
and in a bilayer (or two-coupled chains) dipolar boson
systems [18–20]. Moreover, the intraspecies paired super-
fluid or molecular superfluid (MSF) has also been predicted
in three different single-component bosonic systems, i.e., an
atomic Bose gas with a Feshbach resonance [21–23],
attractive Bose-Hubbard model with three-body on-site
constraint [24,25] and the extended Bose-Hubbard model
(EBHM) with pair hopping [26–28].
Unfortunately, the MSF in single-component bosonic

systems has not been observed experimentally. One reason
is the short lifetime of molecular condensates by using the
Feshbach resonance technique [23]. Besides, it is quite
difficult to realize the attractive Bose-Hubbard model with
a three-body constraint. Moreover, MSF is predicted in
EBHM (when V ≠ 0) under large value of pair hopping P
and nearest-neighbor interaction V [26–28], but it is hard to
reach this parameter region in experiment. In a real
experimental system, P and V are much smaller than
normal hopping and on-site interaction by 3–4 orders of
magnitude [29]. Indeed, the calculation in EBHM ignores
the effect of an important term, i.e., density-induced
tunneling T, which could be much larger than V and P.
Thus, alternative feasible experimental schemes such as

implementing a feasible scheme in the interacting two-
component bosonic systems, are imperiously needed to
observe this fascinating MSF state. Meanwhile, there is still
a lack of study on the exotic Mott insulator (MI) phase in
the interacting two-component bosons. On the whole, two-
component bosons with novel interaction may provide an
opportunity for discovering the novel phases.
On the other hand, by periodically shaking optical lattice

[6,30–33] or modulating interaction strength [34,35], the
Floquet technique has shown its ability to engineer the form
and intensity of interactions in various experiments. So far,
Floquet engineering is mainly focused on manipulating the
single-particle hopping processes [36–44], where the
hopping amplitude or hopping phase (Peierls phase)
depends on the occupation numbers of the sites relevant
to hopping processes. The internal atomic degrees of
freedom, e.g., pseudospin, can be considered as the
synthetic “dimensions” [45]. By coupling to a periodically
modulating radio-frequency field, a new type of two-
particle hopping process with pair hopping interaction
along a synthetic dimension or synthetic pair hopping
(SPH) interaction can be realized in a two-component
boson system.
In this Letter, we propose a Floquet engineering scheme

in a two-component boson system to generate a new two-
particle hopping process with SPH interaction. Two novel
quantum states of matter may emerge, including the MSF
state and the noninteger Mott insulator (NMI) state. The
NMI state displays that the number of the total atoms of
two-component at each site is an integer, but each compo-
nent is non integer. This NMI phase may provide a possible
platform to host the exotic magnetic phases. Furthermore,
the detection of these two novel states has been addressed.
The realization of our scheme provides a basis for further
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exploration of the novel many-body physics in synthetic
dimensions.
The effective Hamiltonian.—We now turn to the reali-

zation of SPH interaction for two-component bosons on
square optical lattice, by using periodic modulating radio-
frequency field. We first introduce the time-dependent
Hamiltonian which is used to describe the physics of this
periodic modulated two-component boson system. In order
to illustrate conveniently and vividly, the relevant physical
processes of this time-dependent systems have shown in
one-dimensional (1D) systems (see Fig. 1). Then the
corresponding time-dependent Hamiltonian reads
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where J is the spin-independent hopping amplitude, μ is
spin-independent chemical potential, Âs ¼ ðâs; b̂sÞT are
vector field with annihilation operators âs (b̂s) on lattice
site s for spin-down (spin-up) component, Δ ¼ ωres − ωrf
is the detuning of the radio wave (ωrf ) from the atomic
resonance (ωres), ΩðtÞ ¼ Ω sin ðωtÞ is Rabi frequency, σ̂x;z
are pauli matrices [46], and Uaa, Ubb, and Uab labels the
strength of the on-site repulsive interactions. In Eq. (1), the
first term describes normal hopping terms between nearest
neighbor site for each spin, the terms in the second line
describe two spin states coupled by the periodic radio-
frequency field, and the last three terms describe intra-
species and interspecies on-site interactions.
Then we obtain the effective Hamiltonian [47,48] (see a

derivation in the Supplemental Material [49])
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where the preceding five terms describe the two-
component Bose-Hubbard model [8–10] and the W term
represents the processes of SPH along a synthetic
dimension. Here, the effective on-site interaction
strength and SPH interaction in Eq. (2) are given
by Ueff

aa ¼ Uaa − ½Ω=ð2ωÞ�2ðUaa −UabÞ, Ueff
ab ¼ Uabþ

2ΔU½Ω=ð2ωÞ�2, Ueff
bb ¼ Ubb − ½Ω=ð2ωÞ�2ðUbb −UabÞ,

W¼−ðΔU=2Þ½Ω=ð2ωÞ�2, and ΔU¼ðUaaþUbbÞ=
2−Uab.
To reveal the relevant physical processes of this effective

Hamiltonian more clearly, we choose a 1D system as an
example where it can be mapped to coupled two-spin chain
(synthetic chain) systems, and every single chain represents
one species of boson. The relevant processes are shown in
Fig. 2. Although this Hamiltonian in Eq. (2) is obtained
with detuningΔ ¼ 0, we can also obtain it with an effective
detuning ℏΔeff ¼ ℏΔ − ðμa − μbÞ ¼ 0 even if detuning
Δ ≠ 0. This condition can be satisfied by tuning μa and
μb via changing fillings na and nb.
The phase diagram.—Below, the phase diagram will be

numerically studied by the Gutzwiller method that has been
successfully used to study various phenomena such as
stationary states [52–54], time evolution [55–57], and
excitation dynamics [58]. We will use the cluster
Gutzwiller method [59–61], which can well capture the
quantum fluctuations for a larger cluster to obtain the phase
diagram of the two-component boson gases with SPH
interaction on a square optical lattice. We can naively
assume that there exists the nontrivial MSF state (hâii ¼ 0
but ϕDa ¼ hâiâii ≠ 0) apart from the phases that have been
found in the two-component Bose systems with W ¼ 0.
The previous research on the two-component boson system
with zero SPH interaction reveals that the asymmetric case
(Uaa ≠ Ubb) shows richer phases than the symmetric one
(Uaa ¼ Ubb) [10]. Thus, we study the phase diagram for the
asymmetric case of two-component boson system with
finite SPH interaction. We have chosen a typical
asymmetric case Ueff

aa ¼ 1.0, Ueff
bb ¼ 0.7, Ueff

ab ¼ 0.5, and
W ¼ −0.1 to study the phase diagram via calculating
various possible superfluid orderings. The phase diagram
is presented in Fig. 3, where we choose the cluster as 1 × 2.
A supercell cluster 1 × 2 includes two sites in lattice space
which are equivalent to four sites in synthetic space [49].

Uaa bb
ab

UU

UH

J

HKin rfH

FIG. 1. The relevant physical processes of time-dependent
systems. ĤKin describes each spin hopping between the nearest
neighbor site, ĤrfðtÞ is relevant to radio-frequency coupling of
the two spin states with periodic Rabi frequency ΩðtÞ, and ĤU
represents the on-site interactions.

J

W

FIG. 2. This two-component boson system in a 1D chain can be
mapped to a coupled two-spin chain with SPH interactionW. The
green arrow indicates intraspecies normal hopping J, double both
sides dashed arrow indicates SPH interaction W, on-site inter-
actions are indicated by both sides dashed arrow.
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There are five phases, i.e., 2MI, SCF, 2SF, NMI (ψ a ¼
ψb ¼ ϕSCF ¼ ϕDa ¼ ϕDb ¼ 0), and SFb þMSFa (ψ a ¼ 0,
ψb ≠ 0, ϕDa ≠ 0, and ϕDb ≠ 0) [47]. The 2SF, 2MI, and
SCF phases have been discussed [8,10], but the NMI
phase and SFb þMSFa are nontrivial phases which have
rarely been predicted in two-component boson systems.
Surprisingly, there is no SFb þMIa phase which usually
exists in two-component Bose-Hubbard model for the
asymmetric case [10]. Transiting from the NMI phase by
increasing the amplitude of tunneling strength J, the
systems may enter into an intriguing SFb þMSFa phase
that may exist in a large parameter region of phase diagram
(see Fig. 3). In this parameter region, if we switch off the
SPH interaction from jWj ≠ 0 to jWj ¼ 0, the SFb þMSFa
phase will undergo a second order phase transition to
SFb þMIa phase. It is remarkable that both the NMI phase
and MSFa phase are induced by the intriguing SPH
interaction.
This nontrivial NMI phase is incompressible and has a

nontrivial density distribution feature, which shows an
integer total atom number at each site and a noninteger
atom number for each species. This distribution feature of
the NMI phase is significantly different from the atom
distribution of 2MI phase, and the atom distribution of each
site as a function of variation μ with fixed hopping
amplitude J is presented in Fig. 4(a). The reason why
there exists such intriguing NMI phase is that in the limit of
J ¼ 0 (NMI phase), the total number n̂i is a good quantum
number but n̂ai and n̂bi are not, since the Hamiltonian ĤJ¼0

commutes with n̂i but does not commute with n̂bi or n̂ai.
For the J < Jcritical case, the property of the ground state is
unchanged, but the parameter region is shrunk, thus the
ground state is also the NMI phase. By mapping this new
type Mott insulating system to the pseudospin system, we
may realize various tunable quantum spin models. Thus,
the intriguing noninteger feature of the NMI phase may
provide a plausible platform to host some exotic magnetic
phases.

By changing the value ofW, the system may evolve from
the NMI phase into the novel SFb þMSFa phase [see
Fig. 4(b)], where the SFb þMSFa phase is characterized by
normal superfluid of b (spin-up) component and nontrivial
MSF of a (spin-down) component. The characteristics of
the MSFa can partly be understood via the coherent state. It
is well known that the coherent state satisfies the
condition ψ a ≠ 0 and ψDa ≠ 0, and even or odd coherent
state [62,63] satisfies the condition ψ a ¼ 0 and
ψDa ≠ 0, where even and odd coherent state read ½j0iþ
���þα2nj2ni= ffiffiffiffiffiffiffiffiffiffiffið2nÞ!p �=coshjαj2 and f½αj1iþ���þα2nþ1

j2nþ1i= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2nþ1Þ!p �=sinh jαj2g, respectively. As is well
known, the perfect superfluid phase (the ground state of the
Bose-Hubbard model at U ¼ 0 limit) is the coherent state,
but the superfluid phase (in the case of U ≠ 0) is not the
coherent state [2]. Thus, the perfect MSFa can be consid-
ered as an odd or even coherent state, but MSFa state is no
longer an even or odd coherent state for interacting
systems.
Symmetry analysis.—Here we analyze the general

symmetry feature of the phases and transitions between
them. It is obvious that a finite SPH interaction W breaks
Uð1Þ ×Uð1Þ symmetry of the trivial two-component boson

FIG. 3. The phase diagram of two species of Bose gases with
SPH interaction in square optical lattice. The interaction param-
eters are Ueff

aa ¼ 1.0, Ueff
bb ¼ 0.7, Ueff

ab ¼ 0.5, and W ¼ −0.1.
There are five phases; moreover, the NMI is a new phase.

(a)

(b)

FIG. 4. (a) The total particle number na þ nb, the number of
spin-down (spin-up) components na (nb) as a function of
chemical potential μ with J ¼ 0, 0.008, 0.016. (b) na þ nb
and na and nb as functions of W with J ¼ 0.008 and μ ¼ 2.0;
meanwhile the superfluid order parameter hâ âi and hb̂i as a
function ofW are also shown, where the pink (black) vertical axis
represents the value of the superfluid order parameter (particle
number). The interaction parameters are Ueff

aa ¼ 1.0, Ueff
bb ¼ 0.7,

and Ueff
ab ¼ 0.5.
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Hamiltonian (W ¼ 0) down toUð1Þ × Z2 symmetry (under
the phase transformations b̂i → b̂ieiθ and âi → âieiθ [or
âi → âieiðθþπÞ], the Hamiltonian in Eq. (2) keep
unchanged). Here 2MI and NMI phases break no sym-
metry, but the SCF, 2SF, and SFb þMSFa phases are
related to different ways that the Uð1Þ × Z2 symmetry is
broken. More specifically, the SCF phase breaks the
discrete Z2 subgroup but the Uð1Þ symmetry is remaining.
The 2SF phase totally breaks theUð1Þ × Z2 symmetry. The
SFb þMSFa phase breaks Uð1Þ × Z2 symmetry except for
the special point θ ¼ π, where SFb order changes sign
(hb̂i → hb̂ieiπ) and MSFa order keeps unchanged
(ϕDa → ϕDaei4π and ϕDa → ϕDaei2π). This type of sym-
metry breaking is rarely revealed in condensed-matter
systems. We need to emphasize that these two superfluids
(SFb þMSFa and the previous predicted MSF) are distinct
states due to different underlying symmetry breaking
physics [64].
The effective-field analysis of the possible phases.—We

will qualitatively analyze the reason why such rich phases
can exist in two-component bosons with SPH interaction.
In a W ¼ 0 case, the mean-field phase diagram can be
obtained by minimizing the free energy F 0 of two-
component Bose-Hubbard model [10]. The corresponding
phase diagram can be divided into two typical cases: if the
interaction is symmetric, there are three phases, i.e., 2SF,
2MI, and SCF (Uab > 0) [8]; if the interaction is
asymmetric, the possible phases are 2SF, 2MI, SCF, and
SFb þMIa) [10]. For the W ≠ 0 case, we can also use the
effective field theory to analyze the possible phases
of this system. We assume that the free energy F has
the form [49]

F ¼ F 0 þ
1

2
½rDajϕDaj2 þ rDbjϕDbj2 þ rDDðϕ�

DaϕDb þH:c:Þ�

þ 1

4
½gDajϕDaj4 þ gDbjϕDbj4�− gðϕ�

SCFψ
�
AψB þH:c:Þ

− g0ðϕ�
DaψBψB þϕ�

DbψAψA þH:c:Þ; ð3Þ

with the condition rDa > 0, rDb > 0, gDa > 0, gDb > 0.
Here the notation ϕDa (ϕDb) is the MSF order of the spin-
down (spin-up) component. For the asymmetric case
(Uaa > Ubb), there are four phases, i.e., 2SF, 2MI, SCF,
and SFb þMSFa which satisfy the corresponding saddle
point equations [49]. Three of them (2SF, 2MI, SCF) have
been predicted in a two-component boson system without
SPH interaction. Surprisingly, the phase SFb þMIa cannot
exist in such system with SPH interaction, and it is replaced
by the novel phase SFb þMSFa, which has not been
predicted in two-component boson system without SPH
interaction. This conclusion is in good agreement with
numerical calculation. Still, the reason for the existence of
NMI cannot be revealed by the effective-field analysis,
owing to such analysis unable to capture the information of
the atom distribution.

Experimental realization and detection.—If we choose
the ½Ω=ð2ωÞ�2 ¼ 0.05 ≪ 1, the SPH interaction becomes
important and the high-order terms (O½f4ðtÞ=ℏ4�) can be
ignored [49], then the Hamiltonian in Eq. (2) can
adequately describe all the relevant physical processes of
this driving system. If we want to realize the NMI
and MSFa phase in a practical experimental system, W ∝
½Ω=ð2ωÞ�2 must be far less than on-site interaction. By
choosing the suitable values of Uaa, Ubb, Uab (can be
realized via a Feshbach resonance) and ½Ω=ð2ωÞ�2 ¼ 0.05,
the effective on-site interactions have the same values as
presented in the caption of Fig. 3, while the W ¼ −0.0117
is far less than on-site interaction. In this feasible region,
NMI and MSFa phases can also occupy a rather large
region in the phase diagram (see Fig. S3 in the
Supplemental Material [49]), thus the prospects of observ-
ing NMI and MSFa states within this Floquet driving
system is quite optimistic. Moreover, the nontrivial feature
of the number distribution of NMI state can be directly
detected by combining the spin-removal technique [65,66]
and in situ imaging techniques [67], which have been
successfully employed to detect the bosonic MI [68–70]
and fermionic MI [71,72] with single-atom and single-site
resolution. The previous research has shown that the MSF
and SF phases are distinguished via time-of-flight (TOF)
shadow images [23], thus SFb þMSFa can be directly
detected by spin-resolved TOF images [73].
The time-periodic driving often leads to uncontrollable

heating in the interacting systems. It is a hard task to
calculate the effects of parametric instabilities induced by
heating. According to a recent experiment [51], we can
estimate roughly typical timescale τ, during which the
system can stay in steady states. If we choose the
interaction parameters shown in the Supplemental
Material [49] with Ω=2 ¼ 2π × 0.5 and ω ¼ 2π ×
2.236ð2π × 5Þ KHz f½Ω=ð2ωÞ�2 ¼ 0.05ð0.01Þg, the sys-
tem can steadily stay in the phase SFb þMSFa, owing
to τ ≈ 41ð93Þ ms > tc (see Fig. S3 in the Supplemental
Material [49]). Here tc ≈ 15 ms [2] is the ballistic expan-
sion time in a typical TOF experiment. If τ ≫ tc, the
ground state of the effective Hamiltonian is stable enough
in the timescale of experiment detecting. Furthermore, we
can use the two hyperfine states jF ¼ 1; mF ¼ −1i and
jF ¼ 2; mF ¼ −1i of the n2S1=2 ground state of bosonic
alkali atom (7Li, 23Na, or 87Rb) to implement our driven
scheme.
Discussion and conclusions.—The main focus of current

research on synthetic dimension systems has remained on
the construction of synthetic gauge fields. However, for the
more general interaction term, e.g., SPH interaction, which
can generate novel many-body states, has not been
engineered in synthetic dimension. Although Floquet
engineering is mainly used to manipulate the single-particle
hopping processes, we have proposed to engineer a
two-particle hopping process with SPH interaction in the
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two-component boson system. This intriguing SPH inter-
action can lead to two novel quantum phases, i.e., NMI and
MSFa. The NMI state is a new type of Mott insulator, in
which the total number at each site is an integer, but each
component is a noninteger. The MSFa state has been
proposed for some years, and not much progress has been
made to host such a state in a realistic system. The region of
NMI and MSFa states are gradually shrunken with rapidly
decreasing the SPH interaction (see Fig. 3 and S3 in the
Supplemental Material [49]). Thus, the prospects of
observing the novel NMI and MSFa phases are rather
optimistic in a realistic system. Furthermore, the detection
schemes of these two novel phases are also addressed. The
realization of our scheme may provide a plausible platform
for further exploration of intriguing quantum many-body
phases in synthetic dimensions.
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