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In this Letter, we provide a determination of the coupling constant in three-flavor quantum
chromodynamics (QCD), αMS

s ðμÞ, for MS renormalization scales μ ∈ ð1; 2Þ GeV. The computation uses
gauge field configuration ensembles with OðaÞ-improved Wilson-clover fermions generated by the
Coordinated Lattice Simulations (CLS) consortium. Our approach is based on current-current correlation
functions and has never been applied before in this context. We convert the results perturbatively to the
QCD Λ parameter and obtain ΛNf¼3

MS
¼ 342� 17 MeV, which agrees with the world average published by

the Particle Data Group and has competing precision. The latter was made possible by a unique
combination of state-of-the-art CLS ensembles with very fine lattice spacings, further reduction of
discretization effects from a dedicated numerical stochastic perturbation theory simulation, combining data
from vector and axial-vector channels, and matching to high-order perturbation theory.
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Motivation.—The strength of strong interactions, para-
metrized by the scale-dependent coupling αs, typically
quoted at the Z-boson pole mass, is one of the most
important parameters of the standard model (SM). It is
required in perturbative calculations in collider physics and
its uncertainty is one of dominant sources of uncertainty in
several SM predictions, as well as in tests of SM extensions
[1]. Because of the non-Abelian Yang-Mills nature of
quantum chromodynamics (QCD), αs vanishes asymptoti-
cally at very high energies [2,3] and experiments are able to
follow this energy dependence in various processes over a
wide range of energy scales. This allows us to determine αs
at several scales by fitting experimental data and matching
to a perturbative expansion of an appropriate observable.
Equivalently, using renormalization group concepts, one
may parametrize the running of αs by a single parameter,Λ,
corresponding to the scale where perturbation theory breaks
down. Examples of experimental processes for the extrac-
tion of the strong coupling or the Λ parameter are hadronic
τ decays, deep inelastic scattering, and hadronic final states
of eþe− annihilation. For a review of many aspects of such
determinations and the obtained values, see the Particle
Data Group (PDG) review [4]. However, the strong
coupling constant or the Λ parameter can also be extracted

directly from the QCD Lagrangian, using the nonpertur-
bative formulation of QCD on the lattice. This proceeds
by calculating appropriately designed short-distance
Euclidean observables and, again, matching them to their
perturbative expansions. Over the years, several methods of
how to design such observables have been proposed.
Recent investigations employed, e.g., step scaling methods
[5,6], the static quark-antiquark potential [7–9], the vacuum
polarization function [10], the heavy-quark current two-
point correlation function [11], QCD vertices (e.g., ghost
gluon) [12], or eigenvalues of the lattice Dirac operator
[13]. For a discussion and overview of these and older
results, see the Flavor Lattice Averaging Group (FLAG)
review [14]. The determinations from experiments and
from the lattice enter the world average of αs in the PDG
review [4], recently with a visibly larger impact of lattice
results due to their smaller total uncertainties.
In this Letter, we describe a novel method of estimating

the running of the coupling or the Λ parameter, using
numerical simulations of QCD. The proposed method
employs large volume simulations, it has a moderate
numerical cost, and is clean and straightforward from
the theoretical point of view. It is based on current-current
correlation functions in position space, objects well studied
and easily accessible in the lattice QCD framework. Thanks
to the combination of very fine lattices generated by the
Coordinated Lattice Simulations (CLS) effort [15,16],
precise renormalization factors from the chirally
rotated Schrödinger functional (χSF) framework [17] and
OðaÞ-improvement coefficients [18,19], subtraction of
leading-order and next-to-leading-order discretization
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effects estimated in the numerical stochastic perturbation
theory (NSPT) formulation [20], and various improved
analysis techniques, it yields a competitive total uncer-
tainty. Therefore, it may serve as a robust method of
estimating the Λ parameter. The approach presented here is
not limited to Λ—a position-space analysis may also be
used to reliably estimate other important observables, such
as quark and gluon condensates [21], quark masses [22], or
operator renormalization functions [23–26].
Strategy.—The strategy proposed in this Letter uses a

combination of numerical lattice QCD calculations and
high-order perturbative results. We concentrate on corre-
lation functions of flavor nonsinglet bilinear quark oper-
ators of the form

CΓð1=x;mq; aÞ ¼ Z2
Γhψ̄ iðxÞΓψ jðxÞψ̄ jð0ÞΓψ ið0Þi; ð1Þ

where x is the physical distance, mq is the quark mass of
three degenerate flavors of quarks, a denotes the lattice
spacing, Γ ¼ fV ≡ γμ; A≡ γμγ5g, i ≠ j, and ZΓ is the
(scale-independent) renormalization factor. For a reliable
extraction of αs, we need to work in the regime of distances
satisfying a window condition, a ≪ x ≪ Λ−1. The former
condition guarantees that discretization effects are not
enhanced, while the latter establishes that reliable contact
to perturbation theory can be made. After extrapolating the
correlation functions to the continuum limit and after
renormalization, they can be matched to their perturbative
expansions in terms of αs, typically in the MS scheme
(αMSðμÞ),

CΓðμÞ ¼ cð1ÞΓ αMSðμÞ þ cð2ÞΓ α2
MS

ðμÞ þ � � � ; ð2Þ

where CΓðμÞ≡ CΓð1=x;mq ¼ 0; a ¼ 0Þ. Such an expan-
sion of current-current correlators is presently available up
to four loops [27]. Knowing CΓðμÞ from numerical sim-
ulations and the analytic form of coefficients cðiÞΓ , we solve
Eq. (2) for αMSðμÞ. Subsequently, we convert that value to
our estimate of the Λ parameter. Now, we provide details of
the different steps needed to reliably obtain CΓðμÞ.
Crucial elements of the analysis.—We start with the bare

lattice data for correlation functions CA=Vð1=x;mq; aÞ with
the OðaÞ improvement of the currents implemented by
using improvement coefficients cA from Ref. [18] and cV
from Ref. [19]. The ensembles used in this study are
summarized in Table I. We perform 64 inexact and 2 exact
measurements per configuration using the truncated solver
method [28] and for every lattice distance x=a, we average
correlators evaluated from all sites equivalent with respect
to the hypercubic symmetry of the lattice.
At fixed lattice spacing and lattice distance, we extrapo-

late the correlators to the chiral limit. We use a fitting ansatz
linear in the dimensionless combination y ¼ t0m2

π , where t0
is an intermediate unphysical scale introduced in Ref. [30]
and we take the values of t0=a2 from Ref. [29]. The quality
of the chiral fit was tested at β ¼ 3.55, where we have four
pion masses available. We compared the linear fit in y to
either all (“lin4”) or the three lightest masses (“lin3”) with
the quadratic one to all masses (“quad4”) for all the relevant
distances (for more details, see the Supplemental Material
[31]). The small differences that we observe in the chiral
limit amount, on average, to 0.17% (lin3 vs lin4) and 0.26%
(quad4 vs lin4) at the level of correlators. Conservatively,
we propagate the latter to αs via a bootstrap procedure,
taking for other β values the linear ansatz. We denote the
massless correlator by CΓð1=x; aÞ. The massless correlators

TABLE I. Subset of Nf ¼ 2þ 1 CLS ensembles along the symmetric line κl ¼ κs used in this work [15,16]. The gauge action is tree-
level Symanzik improved, while the fermionic one is the Wilson OðaÞ-improved (clover) action with the improvement coefficient, cSW ,
determined nonperturbatively. rqcd30, X450, B450, X250, and X251 have been generated by the RQCD and Mainz Collaborations. For
more details, see Refs. [15,16]. The values of t0=a2 are the reweighted estimates using the symmetric definition of the Yang-Mills action
density [29]. The lattice spacings corresponding to different β values are 0.075 82(24) fm (β ¼ 3.46), 0.0644(7) fm (β ¼ 3.55), 0.0499
(5) fm (β ¼ 3.7), and 0.0391(15) fm (β ¼ 3.85) [29]. The scale setting is based on the determination of light hadron masses on all CLS
ensembles with 6 lattice spacings from ≈0.1 fm down to below 0.04 fm and pion masses ∈ ½135; 420� MeV. The Wilson flow scales are
determined in the continuum using the ϒ baryon mass as input. The last column indicates the number of configurations used.

β Name κl ¼ κs mπ [MeV] t0=a2 # conf.

3.46 B450 0.136 890 419 3.663(11) 320
3.46 rqcd30 0.136 959 320 3.913(15) 280
3.46 X4 50 0.136 994 264 3.994(10) 280
3.55 B250 0.136 700 709 4.312(8) 84
3.55 N202 0.137 000 412 5.165(14) 177
3.55 X250 0.137 050 348 5.283(27) 182
3.55 X251 0.137 100 269 5.483(26) 177
3.7 N303 0.136 800 641 7.743(23) 99
3.7 N300 0.137 000 423 8.576(21) 197
3.85 N500 0.136 725 14 599 12.912(75) 100
3.85 J500 0.136 852 410 14.045(38) 120
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are then expressed in the MS scheme, using renormaliza-
tion factors calculated in Ref. [17], determined using the
χSF framework [36].
A significant step to reliably perform the continuum limit

extrapolation is to reduce the size of discretization effects
present in the data. To this aim, we perturbatively compute
Oða∞g2Þ artifacts, i.e., we replace the correlation functions

CΓð1=x; aÞ → CΓð1=x; aÞ þ ½Ccont
Γ ð1=xÞ − Clat

Γ ða=xÞ�;
ð3Þ

where Ct
Γ ¼ Cfree;t

Γ þ g20C
one-loop;t
Γ , t ∈ fcont; latg and the

superscript free/one-loop denotes the tree-level/one-loop
contributions. The massless MS continuum correlators,
Ccont
A=V , are given in Ref. [27]. In turn, Clat

A=V are computed
in NSPT [20] along the lines of Refs. [37,38] and are
expressed in the MS scheme using the renormalization
factors for the employed gauge action [39]. (A more
detailed description of the NSPT calculation will be
presented in a separate publication [40]. For a shorter
account, see the Supplemental Material.) Thus, all terms
appearing on the rhs of Eq. (3) are correctly normalized
correlators in the same scheme. The improved correlator,
hence, has leading cutoff effects of Oða2g4Þ. We demon-
strate the reduction of discretization effects in Fig. 1,
depicting the distance dependence of CAð1=x; aÞ at
β ¼ 3.85, for all points used in the extraction of αs. We
show three data sets: without any correction, with the tree-
level correction only, and with the full one-loop NSPT
correction. The scatter of data points is clearly reduced,
yielding a smooth curve. It is important to emphasize that
the tree-level corrected data, even though seemingly
already smooth, still prohibit any meaningful extraction

of αs (see Supplemental Material for more details). Thus,
reliable control of discretization effects necessitates the use
of the one-loop subtraction of artifacts (all orders in the
lattice spacing) and this step is crucial for the success of the
method. Note also that the one-loop correction is drastically
smaller than the tree-level one, hinting at good convergence
of this expansion. Moreover, the one-loop-corrected corre-
lators are very close to the four-loop continuum perturba-
tive curve [27], indicating that the remaining discretization
effects are small at this lattice spacing.
In order to perform the continuum extrapolations, we

need to follow the lines of constant physics. In our case, the
only relevant scale is the correlator distance x, which we
keep fixed in physical units by interpolating to the desired
distance at all β values. We use two interpolation ansatzes,
linear and quadratic in x2, between the two and three closest
data points to find the interpolated value at each lattice
spacing. We consider three lattice (“democratic”) direc-
tions, for which hypercubic artifacts are known to be the
smallest [24,25]: ð0; k; k; kÞ;−ðk; k; k; kÞ;−ð0; k; k; 2kÞ
with k ∈ f1; 2; 3g and interpolate independently for each
of them. We note that other types of points do not make it
possible to extract αs at sufficiently small distances or break
the rotational symmetry too severely (“nondemocratic”
directions). Hence, similarly as in momentum-space studies
of renormalization functions (see, e.g., Ref. [41]), the one-
loop subtraction needs to be supplemented by a “demo-
cratic” criterion (see also the Supplemental Material). In
this way, we keep the discretization effects related to the
breaking of rotational symmetry well controlled and fixed
as we change the lattice spacing. We use the difference of
the two interpolation models as the systematic uncertainty
associated to this step.
If discretization effects are under control, the continuum

limits corresponding to the same physical distance should
agree for each of the three lattice directions. We checked
that this is the case and hence, we performed combined
continuum fits of data for all three directions. Depending on
the distance (and, thus, the available lattice spacings),
we use from 6 to 12 data points and constrain the fit by
a common value in the continuum, CΓð1=x; a ¼ 0Þ. The
fitting ansatz reads

CΓð1=x; aÞ ¼ CΓð1=x; a ¼ 0Þ þ
X

i¼lattice direction

αia2 ð4Þ

and has four fit parameters.
The difference between the axial and vector correlation

functions was estimated in various frameworks, for a
review see Ref. [42], including lattice QCD [21,43].
Also empirical data exist for this observable [44]. At short
distances, the difference between the vector and axial
correlators is reliably provided by the operator product
expansion [45]. Using estimates from Ref. [46], the relative
difference ranges from 0.03% at x ¼ 0.1 fm up to 1.5% at

FIG. 1. Impact of the tree-level (red squares) and one-loop (blue
circles) improvement of the massless axial current-current corre-
lation function at β ¼ 3.85. The unimproved lattice correlators
are shown as yellow rhombi. Tree-level and four-loop [27]
continuum perturbative lines are also shown. The difference of

the latter, corresponding toΛNf¼3

MS
found in this work, with respect

to the blue points isolates the remaining discretization effects
at this β.
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x ¼ 0.3 fm. Hence, within the statistical and systematic
precision of our data, the two correlators are indistinguish-
able in that range of distances, see the inset of Fig. 2 and the
Supplemental Material for more details. We use this
observation in a two-fold way. (i) First, we employ it as
a test of the reliability of the continuum extrapolation. In
further analysis, we consider only the physical distances for
which the independently extrapolated axial and vector
correlators agree within their uncertainties. On the one
hand, this criterion excludes lattice directions and physical
distances which are too short and no control over discre-
tization effects is possible, setting the lower limit to 0.1 fm.
On the other hand, the two correlators are no longer
equivalent at distances larger than around 0.35 fm within
our precision, which sets the upper limit on the physical
distances where the impact of nonperturbative condensates
is negligible. Note that the scale where the correlators
become incompatible is related to effects of spontaneous
chiral symmetry breaking and not to the breakdown of
perturbation theory. In Fig. 2, we show an example of the
continuum extrapolations of the axial and vector correlators
at the physical distance of x ¼ 0.15 fm. For examples for
other distances, see the Supplemental Material. The fits
are performed independently for both Dirac structures and
in both cases, the combined fits to our three lattice
directions provide a good description of the data,
which holds also at other relevant distances (with
χ2=d:o:f: ∈ ½0.1; 2�). We emphasize that this is achieved
only in the case of NSPT-corrected data, while continuum
fits for only tree-level corrected data lead to χ2=d:o:f: ≈
10–20 at the relevant distances. Moreover, although the
individual data points at finite lattice spacing are different
for different Dirac structures, CA ¼ CV in the continuum.

(ii) Second, for the physical distances in the relevant range
0.1–0.2 fm, we use the independent data for CA and CV
and consider their average, thus gaining in statistical
precision.
Having the continuum-extrapolated MS correlators, we

know both sides of Eq. (2) and we can determine αMSðμÞ
for different scales, corresponding to different physical
distances 1=μ ¼ x. The results are shown in Fig. 3. At
distances above around 0.2 fm (scales below 1 GeV), we
observe that the running of the coupling freezes, indicating
the breakdown of matching to four-loop perturbation

theory. We convert our results for the coupling to ΛNf¼3

MS
[47,48] separately at each distance, see Fig. 4. We show the
perturbative running of αs using our final value of the Λ
parameter in Fig. 3 and we discuss it below, after address-
ing systematic effects in our determination.
Final result.—We consider several sources of uncer-

tainty in our analysis and we decompose the error of our
final result for the Λ parameter according to these different
sources. The raw lattice correlators are, obviously, subject
to statistical errors (“lat stat”). Extrapolating the correla-
tors to the chiral limit has its associated systematic
uncertainty (“chiral”). The perturbative subtraction of
discretization effects via NSPT is also subject to statistical
errors (“NSPT stat”) and moreover, to a systematic
uncertainty of extrapolation of NSPT results to the infinite
volume limit (“NSPT infV”). The latter is computed as the
difference between a polynomial fit to several volumes
ranging from V ¼ 324 up to V ¼ 804 and the estimates
from the largest volume V ¼ 804. The correlator inter-
polation uncertainty, described above, is denoted by
“interpol.” Renormalizing the correlators in the MS
scheme introduces an uncertainty from the values of Z

FIG. 2. Continuum extrapolation of the axial (left) and vector
(right) correlators at x ¼ 0.15 fm. Both extrapolations are per-
formed independently, but their extrapolated values agree within
uncertainties. The inset shows the distance dependence of the
continuum-extrapolated axial and vector correlators. The error
bars are smaller than the symbol size. Within our uncertainties,
the correlators exhibit agreement for distances ≲0.35 fm.

FIG. 3. Running of αs extracted from the lattice data (blue
points). At distances above around 0.2 fm, the running freezes
and indicates the breakdown of matching to perturbation theory.
The shaded blue band is the corresponding five-loop perturbative
running [49–51] using the final value of ΛNf¼3

MS
determined in this

work (see section Final result). The darkest band corresponds to
the 1 − σ total uncertainty of ΛNf¼3

MS
and the lighter bands to 2-σ

and 3-σ.
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factors (“ZA” and “ZV”). The uncertainty of the cV and cA
improvement coefficients is completely negligible com-
pared to its other sources. Finally, we estimate the
truncation uncertainty of the final Λ value as the differ-
ence between conversions of αs results to Λ using the four-
loop and five-loop β functions (“trunc”). These
differences are shown in Fig. 4, including also the two-
loop and three-loop cases. The observed behavior sug-
gests that while three-loop perturbation theory still shows
significant truncation effects in the considered energy
range, the four-loop and five-loop results evince conver-
gence. We double this uncertainty to cover the truncation
of the perturbative series of Eq. (2), where the five-loop
coefficient is not available at present.
To make our final result independent from the choice of

the window of physical distances where αs is extracted, we
adopt a systematic procedure similar to the one used in
Ref. [25]. From all distances smaller than 0.2 fm, above
which the coupling freezes, we choose the range 0.13–
0.19 fm, where all other systematic uncertainties are under
good control. Having seven determinations of Λ corre-
sponding to these different distances, we calculate all
possible weighted averages covering from one to seven
subsequent distances. We use the 28 resulting values of Λ
to build a weighted histogram, where the weights are taken
as the squared inverse error of each individual result. The
histogram is approximately Gaussian (see the inset of
Fig. 4) and we fit its mean and width to determine the
central value, i.e., ΛNf¼3

MS
, and its uncertainty from the

choice of the physical distances (“window”). This central
value, along with the total uncertainty, is shown as the
green band in Fig. 4.

The final result for the Λ parameter reads

ΛNf¼3

MS
¼ 342ð2.9Þlatstatð5.0Þchiralð6.5ÞNSPTstat ð6.4ÞNSPTinfV ð0.8ÞZA

ð1.0ÞZV
ð0.4Þinterpolð4.8Þtruncð12ÞwindowMeV

¼ 342ð17Þ MeV; ð5Þ

where we combine the individual uncertainties in quad-
rature to obtain the total error. Our final value agrees well
with earlier lattice determinations, e.g., with the recent one
of Ref. [5], ΛNf¼3

MS
¼ 341ð12Þ MeV, and with a comparable

total error, dominated in our case by the uncertainty from
the choice of the physical distance and by the uncertainty
from the NSPT correction.
Discussion and conclusions.—In this Letter, we pre-

sented and tested a novel method to estimate the MS strong
coupling constant using numerical simulations of coordi-
nate-space correlators and used it to determine the three-
flavor QCD Λ parameter. It is based on current-current
correlation functions in position space at small distances.
Our results suggest that the challenging multiscale problem
of evaluating αs can be addressed using lattices available
today. We have shown that using a combination of state-of-
the-art simulations and novel analysis techniques, one can
find a window of available scales μ and provide an estimate

of ΛNf¼3

MS
with competitive precision. In particular, the

crucial steps are the perturbative subtraction of hypercubic
artifacts and a combined continuum extrapolation using
four lattice spacings and several lattice directions, which
allowed us to control discretization effects at small dis-
tances in lattice units. We, furthermore, profited from
independent evaluations of axial and vector correlators,
which have a common continuum limit at short distances,
to design a criterion to characterize the quality of con-
tinuum extrapolations and gain confidence in the results.
To conclude, we believe that the techniques described in

this Letter provide a robust way of extracting the running of
the QCD coupling and the QCD Λ parameter, with good
statistical precision and well-controlled sources of system-
atic effects. Furthermore, the precision reached in this work
can be increased even more in a systematic way.
Techniques based on current-current correlators in position
space, improved by NSPT reduction of discretization
effects, can be useful to determine other quantities, such
as the quark condensate.
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