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Despite the fundamental importance of quantum entanglement in many-body systems, our under-
standing is mostly limited to bipartite situations. Indeed, even defining appropriate notions of multipartite
entanglement is a significant challenge for general quantum systems. In this work, we initiate the study of
multipartite entanglement in a rich, yet tractable class of quantum states called stabilizer tensor networks.
We demonstrate that, for generic stabilizer tensor networks, the geometry of the tensor network informs the
multipartite entanglement structure of the state. In particular, we show that the average number of
Greenberger-Horne-Zeilinger (GHZ) triples that can be extracted from a stabilizer tensor network is small,
implying that tripartite entanglement is scarce. This, in turn, restricts the higher-partite entanglement
structure of the states. Recent research in quantum gravity found that stabilizer tensor networks reproduce
important structural features of the AdS=CFT correspondence, including the Ryu-Takayanagi formula for
the entanglement entropy and certain quantum error correction properties. Our results imply a new
operational interpretation of the monogamy of the Ryu-Takayanagi mutual information and an entropic
diagnostic for higher-partite entanglement. Our technical contributions include a spin model for evaluating
the average GHZ content of stabilizer tensor networks, as well as a novel formula for the third moment of
random stabilizer states, which we expect to find further applications in quantum information.
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Introduction.—Quantum entanglement is of fundamental
relevance for the behavior of quantum mechanical systems
in condensed matter and high energy physics. From the
perspective of quantum information processing, it is the
resource that provides speedups in quantum computing,
security in quantum cryptography, and improved perfor-
mance in quantum sensing. However, the structure of
many-body or multipartite entanglement is only poorly
understood [1]. In this work, we focus on analyzing
multipartite entanglement in an important but tractable
class of quantum states known as stabilizer tensor net-
works, i.e., tensor networks that are obtained by contracting
stabilizer states. Stabilizer states are an important family of
quantum states that can be highly entangled (even max-
imally so) but still have sufficient algebraic structure to
admit an efficient classical description. This makes them a
versatile tool in quantum information theory, particularly in
the theory of quantum error correction [2]. Of particular
import in the present context is that the tripartite entangle-
ment structure of stabilizer states can be precisely quanti-
fied—any tripartite stabilizer state is locally equivalent to a
collection of bipartite Bell pairs and tripartite GHZ states
[3,4] (cf. Refs. [5–11]).
An important additional motivation to study stabilizer

tensor networks comes from current research in quantum

gravity. In recent years, research in quantum gravity and
quantum information theory has been inspired by a fruitful
mutual exchange of ideas. Tensor networks in particular
provide a common framework, rooted in the similarity
between the structure of the tensor network and the
bulk geometry in holographic duality [12–14]. A para-
digmatic example is the Ryu-Takayanagui formula,
SðAÞ ≃ jγAj=4GN , which asserts that the entanglement
entropy of a boundary region A in a holographic state is
in leading order proportional to the area of a corresponding
minimal surface γA in the bulk geometry [15,16]. Likewise,
in any tensor network, the entanglement entropy of a
boundary subsystem can be upper-bounded in terms of
the size of a minimal cut through the network [17] (Fig. 1).
This bound can be saturated not only through the choice of
suitable tensors [18,19] but is in fact a generic phenomenon
in random tensor networks with large bond dimension
[20,21], the mechanism of which can be under-
stood in terms of multipartite entanglement distillation.
These tensor network models not only reproduce the
Ryu-Takayanagi formula for the entanglement entropy,
but they also implement several other significant features
of holographic duality [18–20]. In many ways, these
properties follow from the bipartite entanglement structure
and can be therefore reduced to entropic considerations.
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In this Letter, we initiate a study of multipartite entangle-
ment in random tensor network models. Our motivation is
twofold: First, recent research in quantum gravity has
raised profound questions regarding the multipartite entan-
glement in holographic states [22–24], in particular with
regards to tripartite entanglement of GHZ type [25,26].
Answers to these questions in the context of tensor

network models will likely lead to new diagnostics appli-
cable in holography. Second, we seek to understand the
general mechanisms by which quantum information is
encoded in tensor networks; an improved understanding
of the entanglement structure may inform the design of
tensor networks that adequately represent the physics.
While it is possible to obtain partial information from
the entanglement entropy of subsystems [22,23,27–29],
many basic questions regarding the multipartite entangle-
ment cannot be answered from entropic data. A striking
example is that a pair of GHZ states cannot be entropically
distinguished from three Bell pairs, even though their
entanglement properties are vastly different [30].
Summary of results. Our main result is that the average

amount of tripartite entanglement in random stabilizer
networks is small. More precisely, for any tripartition the
expected number of GHZ triples remains bounded as we
take the limit of large bond dimensions (Theorem 1). This
has a number of surprising consequences on the correlation
and entanglement structure: (a) The number of Bell pairs
that can be extracted between two subsystems A and B
is roughly half the mutual information IðA∶BÞ (which
in turn can be read off the geometry of the network
using the Ryu-Takayanagi formula); (b) in particular,
the mutual information measures quantum entanglement,
proving a conjecture in Ref. [22] for stabilizer tensor
networks; (c) the monogamy of the mutual information,
IðA∶BÞ þ IðA∶CÞ ≤ IðA∶BCÞ, established in Ref. [22] for
holographic entropies, thus acquires an operational inter-
pretation as originating from the monogamy of quantum
entanglement; (d) the tripartite information I3 ≔ IðA∶BÞ þ
IðA∶CÞ − IðA∶BCÞ (i.e., the difference in the above

inequality) provides a diagnostic for four-partite entangle-
ment; in fact, after extracting all Bell pairs we obtain a
residual four-partite entangled state with the entropies of a
perfect tensor of size −I3=2 [18], strengthening the picture
provided by the holographic entropy cone [28] (Fig. 3).
We establish these results based on two main technical

contributions: First, we diagnose the GHZ content by a
polynomial invariant (the third moment of the partial
transpose ρTB

AB). Its average can be evaluated using a
classical ferromagnetic spin model, the GHZ spin model.
For large bond dimensions, this model is in its low-
temperature (ordered) phase and hence the tripartite entan-
glement is determined by its minimal energy configurations
(Fig. 2). Second, we derive a novel formula for the third
moment of nonqubit stabilizer states. It refines the results of
Refs. [31–33] and we expect that it will be of similar
interest in quantum information theory. Throughout this
Letter, we measure entropies of p-level systems in units of
logp bits.
Random stabilizer networks.—We now describe the

random stabilizer network model. Consider a connected
graph with vertices V and edges E (parallel edges allowed).
Let V∂ denote a subset of the vertices, which we will refer
to as the boundary vertices; all other vertices are called
bulk vertices and denoted by Vb. Given a choice of bond

FIG. 2. Tripartite entanglement and the GHZ spin model. Left.
Tripartition of the boundary. Right. Illustration of the spin model
(with boundary conditions and minimal energy configuration)
used to evaluate the GHZ content of a random stabilizer tensor
network state.

FIG. 1. Stabilizer tensor networks. A tensor network state is
obtained by placing random stabilizer states at the bulk vertices
(blue) and contracting according to the edges of the graph. In the
limit of large bond dimensions, the average entanglement entropy
of a boundary region A is proportional to the length of a minimal
cut γA through the network (dashed line) [20], SðAÞ ≃ SRTðAÞ,
reproducing the Ryu-Takayanagi formula in holography.

FIG. 3. Multipartite entanglement structure. Left. For any
tripartition, there is only a bounded number of GHZ triples
(dashed triangle) and hence the entanglement is dominated by
bipartite maximal entanglement (blue lines). Right. For four (and
more) parties, we can likewise extract maximally entangled pairs
between any two parties (blue lines). The residual state has
approximately the entropies of a perfect tensor (tetrahedron). This
decomposition is in one-to-one correspondence with the extreme
rays of the holographic entropy cone [28].
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dimensions for all edges, we define a pure quantum state by
placing tensors jVxi at the bulk vertices and contracting
according to the edges:

jΨi ¼ ð ⊗
x∈Vb

hVxjÞð⊗
e∈E

jeiÞ: ð1Þ

Here, jei ∝ P
i jiii denotes a normalized maximally

entangled state corresponding to an edge e. The state
jΨi is a tensor network state defined on the Hilbert space
corresponding to the boundary vertices V∂ , and in general
unnormalized. We write ρ ¼ Ψ=trΨ for the normalized
density matrix, where Ψ ¼ jΨihΨj. See Fig. 1 for an
illustration.
To build a stabilizer tensor network state, we choose

bond dimensions of the form D ¼ pN , where p is a fixed
prime and N some positive integer that we will later choose
to be large (for simplicity of exposition, we choose all
bond dimensions to be the same). Thus the Hilbert space
associated with a single vertex is of dimension
Dx ¼ pN degðxÞ, where degðxÞ denotes the degree of the
vertex (i.e., the number of incident edges), and the Hilbert
spaces associated with the bulk vertices has dimension
Db ¼ pNb , where Nb ¼ N

P
x∈Vb

degðxÞ. We now select
each vertex tensor Vx in Eq. (1) independently and
uniformly at random from the set of stabilizer states.
Thus Ψ is obtained by partially projecting one stabilizer
state onto another (viz., the random vertex tensors onto the
maximally entangled pairs), which implies that either Ψ is
zero or again a stabilizer state. In the latter case, which
occurs with high probability for large N, we say that
Ψ is a random stabilizer tensor network state. In any
tensor network state, the entanglement entropy SðAÞ ¼
−trρAlogpρA of a boundary subsystem A ⊆ V∂ can always
be upper bounded by SRTðAÞ ≔ Nmin jγAj [34], where we
minimize over all cuts γA that separate the subsystem A
from its complement Ā in V∂ (Fig. 1). Formally, such a cut
is defined by a subset of vertices VA that contains precisely
those boundary vertices that are in A such that the set of
edges that leaves VA is γA.
The fundamental property of random tensor networks is

that in the limit of large N (or large p), this upper bound
becomes saturated [20]. Thus these models reproduce the
Ryu-Takayanagi formula in holography. More precisely,
the average entanglement entropy of a boundary sub-
system, conditioned on the tensor network state being
nonzero, is given by

hSðAÞi≠0 ≃ SRTðAÞ: ð2Þ

Here and in the following, we write ≃ for equality up to
order Oð1Þ, independent of N. The central fact used to
derive this is that random stabilizer states form a projective
2-design [35,36], i.e., that their first and second moments
agree with the Haar measure. For the reader’s convenience,
and since the derivation in Ref. [20] focused on the case of

large p, we give a succinct derivation in the Supplemental
Material [37]. This result can be strengthened to show that
in fact SðAÞ ≃ SRTðAÞ with high probability [20].
Tripartite entanglement.—Any pure tripartite stabilizer

state ρABC is locally equivalent to a tensor product of
bipartite maximally entangled states, jΦþiAB ∝

Pp
i¼1 jiii,

etc., and tripartite GHZ states jGHZiABC ∝
Pp

i¼1 jiiii
[3,4]. That is, there exists a local unitary U ¼ UA ⊗ UB ⊗
UC such that UρABCU† is equal to

ðΦþ
ABÞ⊗c ⊗ ðΦþ

ACÞ⊗b ⊗ ðΦþ
BCÞ⊗a ⊗ GHZ⊗g

ABC ð3Þ

(we suppress local states on A, B and C which do not
impact the entanglement). The integers a, b, c, g ≥ 0 are
uniquely determined; thus they meaningfully characterize
the bipartite and tripartite entanglement between sub-
systems A, B, and C. Now, we can state our main result
(The proof is postponed to Sec. V):
Theorem 1. (Tripartite entanglement in random stabi-

lizer networks) Let A, B, C denote a tripartition of the
boundary (Fig. 2. left), and p≡ 2 (mod 3). Then the
expected number of GHZ states in a random stabilizer
network is of order Oð1Þ in the limit of large N.
Explicitly, we have the following bound in terms of the

geometry of the tensor network:

hgi≠0 ≤ #blogpðpþ 1Þ þ logpð#A#B#CÞ þ 4δ;

with #A the number of minimal cuts for A, etc., #b
the maximal number of components of any subgraph
obtained by removing minimal cuts for A, B C [39],
and δ ¼ ð2pþ 2ÞVb=pN .
In most cases of interest, the minimal cuts are unique and

there remains a single connected component after their
removal, so that hgi≠0 ≤ logpðpþ 1Þ þ 4δ [40]. We note
that Markov’s inequality implies that the number of GHZ
triples in fact remains bounded with high probability.
Theorem 1 vastly generalizes the bound in Ref. [9], which
can be obtained as the special case for a graph with a single
bulk vertex.
In general, the mutual information is sensitive to both

classical and quantum correlations. For a general stabilizer
state of the form (3), IðA∶BÞ ¼ 2cþ g, where c is the
number of maximally entangled pairs and g the number of
GHZ triples (whose reduced state on AB is a classically
correlated state). In random stabilizer networks, however,
Theorem 1 shows that hgi≠0 is bounded. Thus the average
number of maximally entangled pairs that can be extracted
between A and B is roughly one half the mutual informa-
tion, IðA∶BÞ=2 ≃ c, which in turn can be estimated from
the geometry of the tensor network by using the Ryu-
Takayanagi formula (2). In particular, bipartite correlations
between any two boundary subsystems are dominated
by quantum entanglement and determined rigidly by the
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geometry of the tensor network, confirming a property that
is also suspected to hold in holography [22] (Fig. 3. left).
Higher-partite entanglement.—Theorem 1 has a number

of remarkable consequences for the entanglement structure
for four and more subsystems. We first consider the
extraction of bipartite entanglement. Consider a random
stabilizer tensor network state whose boundary is parti-
tioned into k subsystems A1; A2;…; Ak. Applying the
preceding discussion to A ¼ Ai, B ¼ Aj and C ¼ ¯AiAj
their complement, we find that the average number of
maximally entangled pairs that can be extracted between
any two subsystems Ai and Aj is tij ≃ IðAi∶AjÞ=2. The
extraction process is implemented by local unitaries
Ui ⊗ Uj; it leaves all other mutual informations invariant
and does not introduce new GHZ triples. We can therefore
repeat the process and extract maximally entangled pairs
between any pair of subsystems Ai and Aj, until we obtain a
residual state ρ̃A1…Ak

whose bipartite mutual informations
IðAi∶AjÞ is all of order Oð1Þ.
We now specialize the preceding discussion to a four-

partite system (k ¼ 4). Here, the vanishing of the pairwise
mutual informations implies that the entropies of the
residual state will have the following simple form: SðAiÞ ≃
1
2
SðAiAjÞ ≃m for all i ≠ j, where m ≥ 0 is some integer

[28]. Ignoring the order-one corrections, stabilizer states
with such entropies are four-partite perfect tensors. These
are tensors that are unitaries from any pair of subsystems to
the complement, a crucial property used in the explicit
construction of holographic codes [18,19]. Significantly, it
is possible to determinem from the entropies of the original
state, or, more specifically, from its tripartite information
I3 ≔ IðA1∶A2Þ þ IðA1∶A3Þ − IðA1∶A2A3Þ, which is invari-
ant under the extraction of the maximally entangled pairs (it
also does not depend on the choice of A1, A2, A3). In short,
we have established the following result:
Theorem 2. (Four-partite entanglement in random

stabilizer networks) Let A1;…; A4 denote a partition of
the boundary into four subsystems. Then the random
stabilizer network state is locally equivalent to

⊗
i≠j
ðΦþ

AiAj
Þtij ⊗ ρ̃A1A2A3A4

: ð4Þ

In the limit of large N, on average tij ≃ 1
2
IðAi∶AjÞ and the

residual state ρ̃ has approximately the entropies of a perfect
tensor of size −I3=2 [that is, SðAiÞ ≃ SðAiAjÞ=2 ≃ −I3=2].
Our result provides a new interpretation of the tripartite

information I3 for random stabilizer networks—namely, as
a measure of the entropy of the residual, genuinely four-
partite entangled state ρ̃. Since entropies are always
non-negative, it follows that I3 ≲ 0; equivalently, the
mutual information is monogamous, IðA∶BÞ þ IðA∶CÞ≲
IðA∶BCÞ, as was proved for holographic entropies in
Ref. [22]. This can also be seen by observing that, in
our setting, one half the mutual information is an entan-
glement measure; it is up to Oð1Þ corrections equal to, e.g.,

the squashed entanglement Esq [41]; therefore, the
monogamy of the mutual information also follows as a
direct consequence of the monogamy of the latter.
Lastly, we note that although many important physical

states are stabilizers (such as the ground state of systems
with commuting Pauli Hamiltonians, e.g., the toric code or
several fracton models [42], and certain Chern-Simons
theories [43]), most states are far from this ensemble.
Therefore, one should exercise caution in generalizing our
results to other scenarios.
Method: The GHZ spin model.—We now sketch the

proof of Theorem 1. Previous works such as Ref. [9] have
calculated the GHZ content of multiqubit stabilizer states
by using the algebraic formula from Ref. [3] in terms of
dimensions of colocal stabilizer subgroups. Here, we
proceed differently. The idea is to use the partial transpose
ρTB
AB of the reduced state, which is sensitive to bipartite
entanglement. A short calculation using Eq. (3) shows that
trðρTB

ABÞ3 ¼ p−2ðaþbþcþgÞ. Thus the number of GHZ states
contained in a tripartite stabilizer state can be computed as

g ¼ SðAÞ þ SðBÞ þ SðCÞ þ logptrðρTB
ABÞ3: ð5Þ

In a random stabilizer network, we can upper bound
SðAÞ ≤ SRTðAÞ, etc., and we know from the preceding
section that this bound is not too lose. The main challenge
is to upper-bound the expectation value htrðΨTB

ABÞ3i, which
is a third moment in the unnormalized random tensor
network state (1). In general, it is well known that a mixed
quantum state ρAB has bipartite entanglement if ρTB

AB has
negative eigenvalues, hence, moments of ρTB

AB should
contain information about the multipartite entanglement
of the global pure state [44]. This connection is particularly
sharp for stabilizer states through Eq. (5), but we expect the
similar calculations to be informative for other ensembles
of quantum states.
We start with the multiqubit case (p ¼ 2). Only in this

case we can use the recent result that multiqubit stabilizers
are projective 3-designs [32,33]. Thus we have that
for each vertex tensor hjVxihVxj⊗3i ¼ P

π∈S3 RxðπÞ=
DxðDx þ 1ÞðDx þ 2Þ, where we sum over all permutations
π ∈ S3 and write RxðπÞ for the corresponding permutation
operator acting on three copies of the vertex Hilbert
space. Using the analogous notation, we find that
trðΨTB

ABÞ3 ¼ trΨ⊗3RAðζÞRBðζ−1Þ, where ζ is the cyclic
permutation that sends 1 ↦ 2 ↦ 3. A careful calculation
then reveals that

htrðΨTB
ABÞ3i ≤ 2−3Nb

X

fπxg
2
−N

P
hxyidðπx;πyÞ; ð6Þ

where the sum is over all choices of permutations πx ∈ S3,
subject to the boundary conditions πx ¼ ζ for x ∈ A,
πx ¼ ζ−1 in B, and πx ¼ 1 in C; the sum in the exponent
is over all edges, and we define dðπx; πyÞ as the minimal
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number of transpositions required to go from one permu-
tation to the other. We can interpret the right-hand side of
Eq. (6) as the partition sum of a ferromagnetic spin model
with permutation degrees of freedom at each vertex at
inverse temperature logN (Fig. 2, right).
For large N, we are in the low-temperature (ordered)

phase and the partition function is dominated by the
minimal energy configuration:

X

fπxg
2
−N

P
hxyidðπx;πyÞ ≤ 2−NE0ð#þ δÞ;

where E0 denotes the minimal energy, # the number of
minimal energy configurations, and δ ¼ 6Vb=2N . Now
consider an arbitrary configuration fsxg, minimal or not.
If we denote by VA the ζ domain then the boundary
conditions ensure that VA is a cut separating A from BC.
While this cut is not necessarily minimal, we always have
that Nj∂VAj ≥ SRTðAÞ, where j∂VAj denotes the number of
edges that leaves VA. Likewise, the ζ−1 domain VB is a cut
for B and the identity domain VC is a cut for C, so that
Nj∂VBj ≥ SRTðBÞ and Nj∂VCj ≥ SRTðCÞ. For each edge
leaving VA, the energy cost is at least 1, and it is 2 if the
edge enters one of the domains VB or VC (since 1; ζ; ζ−1

are even permutations). Thus the energy cost of an
arbitrary configuration fsxg can be lower bounded by
NE½fsxg� ≥ SRTðAÞ þ SRTðBÞ þ SRTðCÞ, with equality if
and only if all three domains VA, VB, and VC are disjoint
minimal cuts and if each connected component of the
remaining bulk vertices is assigned a transposition. This
can always be achieved, so

E0 ¼ ½SRTðAÞ þ SRTðBÞ þ SRTðCÞ�=N;

with degeneracy # ≤ 3#b#A#B#C, since there are three
possible transpositions to choose from for each component
(Fig. 2. right). If we combine these estimates with Eq. (5)
and use some basic results for the trace, we obtain theorem 1
for qubits.
For p ≠ 2, the stabilizer states no longer form a

projective 3-design. To generalize our preceding argument,
we derive a new formula for the third moment of a random
stabilizer state jVi in ðCpÞ⊗n, where p≡ 2 (mod 3) and
n ≥ 3 ([37]):

hjVihVj⊗3i ¼ 1

pnðpn þ 1Þðpn þ pÞ
X

T

RðTÞ: ð7Þ

The sum is over the group G3ðpÞ of orthogonal and doubly
stochastic 3 × 3 matrices with entries in Fp; RðTÞ is
the corresponding operator defined on ðCpÞ⊗3n by
RðTÞ ¼ rðTÞ⊗n, rðTÞjq⃗i ¼ jTq⃗i for q⃗ ∈ F3

p. For qubits,
G3ðpÞ is equal to the permutation group; in general, it
contains the latter as a proper subgroup. In contrast to
previous results, which compute the frame potential of

stabilizer states [31–33], our formula can be used to evaluate
arbitrary third moments; we expect that Eq. (7) will be of
independent interest in quantum information theory.
Just like in the case of qubits, the operators RðTÞ act as a

tensor product with respect to the n copies of the single-
particle replica Hilbert space ðCpÞ⊗3. This is the central
property that allows us to adapt the argument given above
for qubits to obtain a classical ferromagnetic spin model
with G3ðpÞ degrees of freedom. Theorem 1 follows as
above by an analysis of the low-temperature behavior of
this model. See Ref. [37] for the technical details.
Discussion and outlook.—We have initiated a compre-

hensive study of multipartite entanglement in tensor net-
work models of holography. Our results suggest several
avenues for further investigation: First, it would be of
mathematical interest to extend our analysis and establish
sharp deviation bounds as in Ref. [9]. Second, tensor
networks can also be used to define bulk-boundary map-
pings, or “holographic codes” [18,19,28]. In this case, the
entanglement entropies of code states obtain a bulk
correction, in agreement with the expectations of
AdS=CFT [45], and it is natural to ask in which way the
multipartite entanglement of typical code states is deter-
mined by the bulk [46]. Third, diagnostics such as moments
of the partial transpose considered in this Letter may
provide a path towards generalizing our results to
nonstabilizer states and lead to a more refined under-
standing of multipartite entanglement in the AdS=CFT
correspondence.
Random tensor networks have been a crucial source of

inspiration for recent developments in information theory
of quantum gravity, in part, due to complete analytical
control over their bipartite entanglement structure. Some
important examples include entanglement wedge
reconstruction [47] and the recent progress on understand-
ing the black hole information paradox [48]. In some cases,
the connections go beyond mere inspiration, for instance,
fixed-area states in quantum gravity mimic the entangle-
ment properties of random tensor networks [49]. The
stabilizer model presented in this Letter—while sharing
the bipartite entanglement structure of random tensor
networks—puts multipartite entanglement within reach
of analytical tools.
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