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We discuss general features of charge transport in nonrelativistic classical field theories invariant under
non-Abelian unitary Lie groups by examining the full structure of two-point dynamical correlation
functions in grand-canonical ensembles at finite charge densities (polarized ensembles). Upon explicit
breaking of non-Abelian symmetry, two distinct transport laws characterized by dynamical exponent z ¼ 2

arise. While in the unbroken symmetry sector, the Cartan fields exhibit normal diffusion, the transversal
sectors governed by the nonlinear analogs of Goldstone modes disclose an unconventional law of diffusion,
characterized by a complex diffusion constant and undulating patterns in the spatiotemporal correlation
profiles. In the limit of strong polarization, one retrieves the imaginary-time diffusion for uncoupled linear
Goldstone modes, whereas for weak polarizations the imaginary component of the diffusion constant
becomes small. In models of higher rank symmetry, we prove absence of dynamical correlations among
distinct transversal sectors.
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Field theories provide one of the most invaluable tools in
theoretical physics, with countless applications across a
wide range of disciplines. One of the most renowned and
best studied examples are nonlinear sigma models
(NLSMs) [1–5] and extensions thereof, such as Wess-
Zumino-Witten models [6–8], representing field theories
of interacting fields on curved manifolds that transform
as representations of non-Abelian symmetry groups.
Although sigma models have played a pivotal role in the
studies of Yang-Mills theories and gauge-gravity dualities
[9–11], renormalization group flows [12,13], topological
quantum field theories (QFTs) [5,14], and quantum
criticality [15,16], their dynamical properties remain
poorly understood, especially so in thermal equilibrium.
One notable exception is the quantum O(3) NLSM in
two space-time dimensions, a prominent example of
an integrable QFT [1,3,17,18] which has attracted a
considerable amount of attention in the context of low-
temperature magnetization transport in Haldane antiferro-
magnets [5] (see [19–22]), recently revisited in [23].
Despite many efforts in the domain of quantum field
theories [16,24], and recently even in classical isotropic
magnets [25–28], a comprehensive understanding of
dynamical properties of NLSMs in thermal equilibrium
is still lacking.
Our Letter is motivated by the following fundamental

question: consider G-invariant NLSMs with coset spaces
M ¼ G=H as their target manifolds, where isometry group
G is a non-Abelian simple Lie group and isotropy subgroup
H ⊂ G identified with stability group of a continuously
degenerate vacuum state. As a consequence of G invari-
ance, the system possesses conserved Noether currents.
The goal is a general classification of transport laws in

thermal equilibrium states, irrespective of the coset struc-
ture, Lorentz invariance, dimensionality, and integrability.
In this Letter, we make a key progress in this direction and
classify dynamical two-point correlation functions in equi-
librium states at generic values of background charge
densities for a family of classical nonintegrable NLSMs
in two space-time dimensions.
There is a widespread belief that “ergodic” (chaotic)

interacting systems governed by reversible microscopic
dynamical laws exhibit normal diffusion, epitomized by
the celebrated Fick’s second law ϕt ¼ Dϕxx [29] (unless
several conservation laws are nontrivially coupled, in
which case nonlinear fluctuating hydrodynamics [30]
predicts a plethora of superdiffusive scaling laws [31]).
Here ϕ is a real scalar field whose spatial integral is
conserved under time evolution, ðd=dtÞ R dxϕ ¼ 0. More
generally, one speaks of “normal diffusion” (in thermal
equilibrium) when asymptotic dynamical structure factors,
reading hϕðx; tÞϕð0; 0Þi ≃ t−1=zfG½ðλtÞ−1=zx�, are charac-
terized by (i) dynamical exponent z ¼ 2 and (ii) Gaussian
stationary scaling profile fGðζÞ ¼ exp ð−ζ2Þ, parametrized
by a real state-dependent (diffusion) constant D ¼ λ=4.
In what follows, we shall explain how in systems with
non-Abelian continuous symmetries, conserved Noether
charges from the symmetry-broken sectors evade the
conventional paradigm of normal diffusion.
Undular diffusion at a glance.—The theme of this Letter

is an anomalous type of diffusion law we dub as “undular
diffusion.” To set the stage, we would first like to offer
some basic intuition behind this notion. To this end, we
consider a classical isotropic ferromagnet. The vacuum
(minimum energy configuration) corresponds to all the
spins aligning in the same direction, taking the role of a
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local order parameter. The order parameter always picks a
random polarization direction (a unit vector on a two-
sphere), while the rotational symmetry of the model implies
that the vacuum state is continuously degenerate and
the symmetry is said to be spontaneously broken. It is
widely known that a spontaneous breaking of continuous
symmetry is accompanied by soft Nambu-Goldstone
modes; in ferromagnets specifically, these are quadratically
dispersing magnons which resolve small fluctuations about
the symmetry-broken ferromagnetic vacuum.
Suppose we would like to understand transport proper-

ties of an isotropic ferromagnet at finite temperature.
Invariance under continuous rotational symmetry implies
that all the components of magnetization are globally
conserved under time evolution. Transport properties of
the model are most commonly extracted from the late-time
relaxation of temporal correlation functions among distinct
components. In canonical Gibbs states, which respect the
full rotational symmetry of the model, there is no
distinction between magnetization components. By invok-
ing standard hydrodynamic arguments (based on gradient
expansion of local conserved currents), one expects to
find normal diffusion governed by the aforementioned
Fick’s law.
Consider now the grand-canonical ensemble where

rotational symmetry is explicitly broken by inclusion of
chemical potentials: one polarization direction (and thereby
magnetization component) becomes distinguished, while
the remaining two components are proclaimed as trans-
versal. The question is whether such a symmetry breaking
scenario “at finite density” has any effect on transport
properties. One may indeed expect the difference to show
up in the transversal sector; it is evident that, in the limit of
strong polarization, where thermal fluctuations are domi-
nated by fluctuations near the ferromagnetic vacuum, one

should recover precessional motion governed by the
spectrum of Goldstone modes, which one can interpret
as a diffusion process in imaginary time. Accordingly, it is
natural to anticipate that at any intermediate density (i.e.,
finite chemical potential) the diffusive relaxation of trans-
versal correlators acquires an extra imaginary component,
combining into a single “complex Goldstone mode.” This is
precisely what happens, as shown in the remainder of the
Letter.
Minimal example.—We proceed by detailing out the

“minimal model” of undular diffusion: the classical
Landau-Lifshitz field theory [32,33] (using subscripts to
designate partial derivatives)

St ¼ S × Sxx þ S ×B; ð1Þ

written in terms of the unit vector (spin) field
S≡ ðSx; Sy; SzÞT taking values on a two-sphere,
S · S ¼ 1. We have also included an external magnetic
field B ¼ bêz aligned with the vacuum polarization axis
êz ¼ ð0; 0; 1ÞT to study also “dynamical” breaking of
symmetry.
To study dynamics in the symmetry-broken states,

we introduce transversal complex fields S� ¼ Sx � iSy.
In Fig. 1 we display the dynamical correlator
1
2
RehSþðx; tÞS−ð0; 0Þiμ, averaged with respect to the

invariant grand-canonical Gibbs state at “infinite
temperature” and chemical potential μ with a local prob-
ability density ϱð1Þμ ðSÞ ¼ ½π sinhðμÞ=μ�−1 exp ½μð1 − 2SzÞ�.
To avoid special features related to integrability of
Eq. (1), we performed our simulations on a nonintegrable
lattice discretization (see Supplemental Material [34]).
In the absence of an external magnetic field, we

encounter undular diffusion, manifesting itself in the
form of a spatially undulating correlation function with a

(a) (b) (c)

FIG. 1. Dynamical correlation functions in the transversal sector, computed in a nonintegrable space-time lattice discretization of S2

Landau-Lifshitz field theory [34], immersed in a longitudinal magnetic field of magnitude b (pointing in the z direction). We display
hSxðx; tÞSxð0; 0Þiμ evaluated in a grand-canonical ensemble at infinite temperature and chemical potential μ ¼ 5 (hSzi ≈ 0.8), shown in
absolute value (time step τ ¼ 1, length L ¼ 1024, average over 7.5 × 105 iterations). Three types of dynamical patterns can be
discerned: (a) elliptic regime (b ¼ −6 × 10−3), (b) parabolic regime of undular diffusion without a field (b ¼ 0), and (c) hyperbolic
regime (b ¼ 6 × 10−3). The characteristic curves resemble conic sections associated with linear Goldstone modes.
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characteristic diffusive (parabolic) pattern displayed in
Fig. 1(b). When the rotational symmetry of the model is
“dynamically broken” with an external positive (negative)
magnetic field ,

R
R S�ðx; tÞdx ¼ e∓ibt

R
R S�ðx; 0Þdx, we

observe hyperbolic (elliptic) characteristics, as shown in
Figs. 1(a) and 1(c).
The origin of the observed patterns is best explained by

inspecting the vicinity of the ferromagnetic vacuum
(jSzj → 1), where the equation of motion in the transversal
sector reduces to a linear theory [34]

½i∂t � ð∂2
x − bÞ�S�ðx; tÞ ¼ 0: ð2Þ

Its Green’s function G�ðkÞ ¼ exp ½∓ ωb
magðkÞt� describes

magnons with a gapped quadratic (i.e., type-II) dispersion
law

ωb
magðkÞ ¼ D∞k2 þ ib; ð3Þ

written as an imaginary-time diffusion with an imaginary
diffusion constant D∞ ≡Dðμ → ∞Þ ¼ i. Characteristics
associated with Eq. (2) are conic sections. Remarkably,
their presence remains visible even in the nonlinear
dynamic away from the vacuum (i.e., at general values
of μ), as shown in Fig. 1.
In Fig. 2 we display the numerically computed stationary

profiles for the transversal dynamical correlator (without
the field, b ¼ 0) depending on chemical potential μ. When
approaching the vacuum (i.e., at large μ), the profiles
converge toward the prediction of the linear theory [34]
(gray curves in Fig. 2). In the opposite regime, μ → 0, the
profiles smoothen out into a Gaussian. In Fig. 2(c) we
extract the complex diffusion constant DðμÞ by fitting the
scaling function [given in Eq. (9)].

The above phenomenology offers the following sugges-
tive interpretation: at finite spin density (μ ≠ 0), the late-
time relaxation of nonlinearly evolving fields from the
symmetry-broken sector is governed by an unconventional
Goldstone mode, which has acquired an extra diffusive
component, characterized by a single hydrodynamic
generalized Fick’s law of diffusion with a complex dif-
fusion constant DðμÞ.
To conclude, we remark that two-point correlations

hSzðx; tÞS�ð0; 0Þiμ and hS�ðx; tÞS�ð0; 0Þiμ both trivially
vanish as consequence of the residual U(1) symmetry
about ez. The only remaining nonzero correlator
allowed by symmetry is therefore the longitudinal one,
hSzðx; tÞSzð0; 0Þiμ, which, as expected, undergoes normal
diffusion with real diffusion constant.
Symmetry of higher rank.—It is natural to ask if any new

feature can arise in models exhibiting symmetries of higher
rank. Thus, our next aim is to classify the dynamical two-
point correlation functions among the Noether charges of a
class of models invariant under non-Abelian groups of
higher rank, comprising multiple Nambu-Goldstone
modes in their spectrum. We mainly wish to discern
whether enhanced symmetry can affect dynamics in the
symmetry-broken sector due to interaction among distinct
transversal modes.
Here we shall consider the simplest class of (non-

relativistic) continuous ferromagnets invariant under the
action of unitary Lie groups SUðnþ 1Þ, whose target
spaces are complex projective manifolds Mn ≡ CPn.
The latter are naturally parametrized by complex fields
zaðx; tÞ (alongside their conjugate counterparts z̄a),
and for compactness we introduce the vector of affine
coordinates z≡ ðz1;…; znÞT on Mn. As a starting point,
we consider the most general effective Lagrangian invariant
under SUðnþ 1Þ in the form

(a) (b) (c)

FIG. 2. Stationary asymptotic profiles of the transversal Goldstone mode in the nonintegrable space-time lattice discretization of
the S2 Landau-Lifshitz field theory [34] without a field (b ¼ 0), displaying (a) real and (b) imaginary components of
limt→∞ jtj1=2hSþðx; tÞS−ð0; 0Þiμ=2 as a function of the scaled variable ξ ¼ t−1=2x and U(1) chemical potential μ [using same parameters
as in Fig. 1(b)]. Gray curves mark the prediction of the linear theory, cf. Eq. (2) (in arbitrary units). Dashed blue lines show best
two-parameter fits to Eq. (9). (c) Dependence of real and imaginary components of complex diffusion constantD on chemical potential
μ. Symmetry points H and G designate the U(1)-invariant vacuum and SU(2)-invariant equilibrium measure, respectively (red dashed
line is a guide to the eye).
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Leff ≃ LWZ − Lð2Þ
CPn þ higher − order terms; ð4Þ

where Lð2Þ
CPn ≡P

n
a;b¼1 ηabz̄

a
xzbx is the second-order term in

gradient expansion parametrized by the unique G-invariant
Riemann (Fubini-Study) metric on CPn, reading explicitly
ηab ¼ ½ð1þ z†zÞδab − z̄azb�=ð1þ z†zÞ2, and LWZ ¼ ið1þ
z†zÞ−1ðz†zt − z†t zÞ denotes the Wess-Zumino geomet-
ric term.
To simplify our analysis, we shall discard all the

higher-order terms in Eq. (4). This way, we end up with
nonrelativistic classical sigma models on cosets
CPn ¼ G=H, with isotropy subgroup H ¼ SUðnÞ × Uð1Þ
leaving the ferromagnetic vacuum intact (modulo a
phase). Matrix-valued fields Mðx; tÞ on Mn are unitary
matrices subjected to a nonlinear constraint M2 ¼ 1,
in terms of which the Hamiltonian reads simply
HCPn ¼ 2

R
dxLð2Þ

CPn ¼ 1
4

R
dxTrðM2

xÞ. The equation of
motion is given by a nonlinear partial differential equation
(Landau-Lifshitz field theories of higher rank) [27]

Mt ¼
1

2i
½M;Mxx� þ i½B;M�; ð5Þ

where we have simultaneously adjoined the external field
HB ¼ R

dxTrðBMÞ, which induces dynamical breaking of
conservation laws associated with G.
Longitudinal and transversal fields can be inferred

with respect to the Cartan-Weyl basis of Lie algebra
g ¼ suðnþ 1Þ (see, e.g., [44,45] and the Supplemental
Material [34] for details). Weyl generators, which are
indexed by root vectors spanning the root lattice Δ of g,
are assigned complex Weyl fields ϕ�α. To every Cartan
generator we associate a real longitudinal field ϕi and
formally assign to it a “zero root” forming a set Δ0. To
obtain the ϕ field, one simply traces the corresponding
generator times the matrix M ∈ Mn.
We proceed by introducing grand-canonical Gibbs

states, including generic chemical potentials coupling to
the Cartan charges Qi ¼ R

dxϕiðxÞ. In such a state, the
original symmetry G ¼ SUðnþ 1Þ gets lowered down to
the residual symmetry of its maximal Abelian subgroup
T ¼ Uð1Þ×n. There are thus n “unbroken” longitudinal
fields ϕi associated with the Cartan generators. On the
other hand, the symmetry-broken sector comprises nt ¼
1
2
dimðG=TÞ ¼ 1

2
nðnþ 1Þ pairs of canonically conjugate

complex “transversal” modes ϕ�α. To define a stationary
measure invariant under T, we introduce the diagonal
“torus Hamiltonian” Hμ ¼ − 1

2
diagðμ0; μ1;…; μnÞ, para-

metrized by chemical potentials μi ∈ R (subjected to
TrHμ ¼ 0) and define an invariant normalized measure
ϱðnÞμ dΩðnÞ (

R
Mn

dΩðnÞϱðnÞμ ¼ 1), with volume element dΩðnÞ
on CPn and density

ϱðnÞμ ðMÞ ¼ 1

ZðnÞ
μ

exp ½TrðHμMÞ�; ð6Þ

where ZðnÞ
μ ¼ R

Mn
dΩðnÞ exp ½TrðHμMÞ� represents the

partition function. One can think of Eq. (6) as the grand-
canonical Gibbs measure at infinite temperature (known in
symplectic geometry as an equivariant measure). Further
details can be found in the Supplemental Material [34].
By direct analogy to the previous basic case of

CP1 ≅ S2, the mixed correlators hϕiðx; tÞϕ�αð0; 0Þiμ and
paired intrasectoral correlators hϕ�αðx; tÞϕ�αð0; 0Þiμ once
again vanish as a direct corollary of the T invariance of the
measure (6). Indeed, this statement remains valid even in
Gibbs states at any inverse temperature β.
The new ingredient now is that models of higher rank

possess additional intersectoral correlations among distinct
transversal (Weyl) fields. A starting point for their analysis
is the following “neutrality selection rule” for equal-time
N-point correlators

Xσj∉Δ0

j∈f1…Ng
σj ≠ 0 ⇒ hϕσ1

l1
ϕσ2
l2
…ϕσN

lN
iβ;μ ¼ 0; ð7Þ

which, in conjunction with the commutation relations,
implies (see Supplemental Material [34] for proofs)
the “kinematic” decoupling of transversal modes into
subsectors, that is,

hϕ�αðx; tÞϕγ∦αð0; 0Þiβ;μ ¼ 0: ð8Þ

Consequently, the only dynamical two-point correlation
functions allowed by symmetry are, besides the
longitudinal hϕiðx; tÞϕjð0; 0Þiμ, the intrasectoral correla-
tions hϕ�αðx; tÞϕ∓αð0; 0Þiμ.
Numerical analysis of asymptotic stationary profiles

within each transversal “α sector” shows that asymptotic
dynamical structure factors are accurately captured by
scaling profiles of undular diffusion

hϕαðx; tÞϕ−αð0; 0Þiμ ¼
χα;−α

ð4πDαjtjÞ1=2
e−x

2=ð4DαjtjÞ; ð9Þ

characterized by a complex diffusion constant DαðμÞ,
which recombines the effects of relaxation and precessional
motion into a single hydrodynamic mode. In the
strong-polarization limit, we recover the frequency of the
(linear) Goldstone modes, limjμj→∞DαðμÞ ¼ iωαðhϕjivacÞ,
whereas in the opposite regime of weak polarization
limjμj→0 DαðμÞ ¼ Dα ∈ R [46].
Summary.—A succinct summary of our results is given

in Table I. Dynamical (connected) two-point correlations
functions can be grouped into three classes: (I) longitudinal
correlations hϕiðx; tÞϕjð0; 0Þiμ, with dynamical exponent
z ¼ 2 and Gaussian asymptotic profiles [47], (II)
transversal α sectors hϕ�αðx; tÞϕ∓αð0; 0Þiμ, with dynamical
exponent z ¼ 2 and undulating asymptotic stationary
profiles (exemplified for n ¼ 1 in Fig. 2), and (III)
(i) vanishing mixed and transversal correlations
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hϕiðx; tÞϕ�αð0; 0Þiμ ¼ hϕ�αðx; tÞϕ�αð0; 0Þiμ ¼ 0, and
(ii) vanishing intersectoral correlations hϕ�αðx; tÞϕγ∦α

ð0; 0Þiμ ¼ 0.
Properties I and II have been established based on

numerical observations, while III(i) is a direct corollary
of invariance under the torus subgroup T. Property III
(ii) follows from the “neutrality rule” (7). Indeed, we
believe I–III are generic properties of nonintegrable
Hamiltonian dynamics invariant under non-Abelian
compact Lie group G with G=H-valued local degrees of
freedom (order parameter), averaged with respect to a
polarized T-invariant ensemble. In effect, the listed proper-
ties likewise apply to dynamical two-point functions in
grand-canonical Gibbs ensembles at finite temperature,
which will experience an additional “smearing” effect
across a length scale comparable to the thermal correlation
length.
Conclusion.—Focusing on a class of nonrelativistic

sigma models invariant under unitary Lie groups, we have
investigated the structure of dynamical correlations among
the Noether charges in an equilibrium state with broken
continuous symmetry. While longitudinal correlations
among the Cartan fields expectedly undergo normal
diffusion, we found that dynamics in the transversal
(symmetry-broken) sector is governed by unorthodox
Goldstone modes that satisfy a complexified diffusion
law, characterized by dynamical exponent z ¼ 2 and
“complex Gaussian” profiles governed by a complex
diffusion constant, which we have suggestively named
undular diffusion. The phenomenon is present in a generic
nonintegrable (chaotic) dynamics and does not depend on
the microscopic details of the model or particular lattice
discretization.
The main lesson to draw is twofold: (A) the ubiquitous

Fick’s law of diffusion, believed to be a hallmark of chaotic
reversible many-body dynamics, can indeed be violated in
systems that support type-II Goldstone modes, and
(B) dynamical systems invariant under non-Abelian Lie
group G do not support any dynamical correlations among
the conserved Noether currents from different transversal
suð2Þ sectors in grand-canonical Gibbs equilibrium states.
With regard to (A), an alternative viewpoint is to argue that

undular diffusion is an analytic prolongation of the Fick’s
law of diffusion into the complex plane.
We note that classical nonrelativistic NLSMs that appear

as the leading term of the gradient expansion of G-invariant
dynamics on Hermitian symmetric spaces, such as Eq. (5),
are commonly found to be integrable [48,49]. A salient
feature of integrable dynamics (which can be accurately
captured by generalized hydrodynamics [50,51]) are
stable nonlinear modes (solitons), which render longi-
tudinal correlators ballistic (quantified by finite charge
Drude weights [52–55]) with diffusive corrections [56–59],
or even superdiffusive dynamics that takes place in
unpolarized Gibbs states [60,61], recently examined in
[23,27,28,62–67]. In performing numerical computation,
we have always employed appropriate lattice discretiza-
tions to ensure that integrability is manifestly broken.
We have nonetheless verified that even in integrable
discretizations of CPn sigma models (5) [27], dynamics
of transversal models associated with internal “preces-
sional” degrees of freedom still display undular diffusive
profiles.
On general grounds, one can expect that the phenome-

non survives quantization, i.e., to persist in quantum lattice
ferromagnets invariant under non-Abelian Lie groups
(irrespective of integrability) and to extend to higher
space-time dimensions.
There are several interesting venues left to be explored,

for instance, (i) develop a quantitative framework to access
asymptotic stationary profiles that characterize undular
diffusion, (ii) extend the analysis to other symmetry groups
and coset spaces, and (iii) infer the structure of transversal
dynamical correlators also in relativistic sigma models,
both in the classical and quantum settings.
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