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Fractional kinetic equations employ noninteger calculus to model anomalous relaxation and diffusion in
many systems. While this approach is well explored, it so far failed to describe an important class of
transport in disordered systems. Motivated by work on contaminant spreading in geological formations, we
propose and investigate a fractional advection-diffusion equation describing the biased spreading packet.
While usual transport is described by diffusion and drift, we find a third term describing symmetry breaking
which is omnipresent for transport in disordered systems. Our work is based on continuous time random
walks with a finite mean waiting time and a diverging variance, a case that on the one hand is very common
and on the other was missing in the kaleidoscope literature of fractional equations. The fractional space
derivatives stem from long trapping times, while previously they were interpreted as a consequence of
spatial Lévy flights.
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Fractional calculus is an old branch of mathematics that
studies noninteger differential operators [1–4]. This method
is used extensively to model anomalous diffusion and
relaxation in a wide variety of systems [5–8]. To recap,
consider the fractional diffusion equation [9,10] for the
density of spreading particles Pðx; tÞ,

∂βP
∂tβ ¼ Dβ;μ∇μP; ð1Þ

where Dβ;μ, with units mμ=sβ, is a generalized diffusion
constant. The fractional time and space derivatives are
convolution operators that more intuitively are defined with
their respective Laplace and Fourier transforms (see
below). This equation, sometimes called the fractional
diffusion-wave equation, reduces to the diffusion equation
when β ¼ 1, μ ¼ 2, and the wave equation for β ¼ 2,
μ ¼ 2. μ < 2 corresponds to long spatial jumps referred to
as Lévy flights (LFs), while β < 1 to long dwelling times
between jump events [7]. Originally, this equation was
derived using the continuous time random walk (CTRW)
model [7,11–16]. More recently, the fractional diffusion
equation with β ¼ 1 was derived for heat transport using
models of interacting particles [17,18]. Such fractional
kinetic equations are used to describe the time-of-flight
experiments of charge carriers in disordered systems where
due to trapping β < 1, μ ¼ 2 [19,20] and anomalous
diffusion of cold atoms in optical lattices where the
atom-laser interaction induces μ < 2 and β ¼ 1 [21,22].
Extensions that include external forces are well studied
within a framework referred to as the fractional Fokker-
Planck equation [23–26] and distributed order fractional
equations [27,28]. For an extensive review, see Ref. [7].

Equation (1) exhibits reflection symmetry, and hence,
the packet of spreading particles is symmetric around its
mean if the initial condition density is localized. In
disordered systems with fixed advection, symmetry break-
ing is found, and Eq. (1) is invalid. Such behavior is found
throughout hydrology, for example, for tracer and con-
taminant spreading in heterogeneous media. For more than
two decades, two opposing and competing frameworks
were developed in this field. One approach advanced by
Benson, Schumer, Meerschaert, and Wheatcraft (BSMW)
[29,30] proposed that the mechanism for transport is
controlled by nonlocal spatial jumps of the Lévy type
[7,31–33]. It was suggested that solute particles may
experience long movements in high velocity flow paths,
leading to such superdiffusive behavior, possibly in the
spirit of LFs in rotational flow [34]. Importantly, since field
observations exhibit nonsymmetric shapes of the spreading
packet of particles, the microscopic picture introduces a
skewed probability density function (PDF) of spatial jump
lengths. This approach extensively promoted the use of
nonsymmetrical fractional space advection-diffusion equa-
tions for LFs; see Ref. [33] for an overview.
The second approach uses what might be considered the

opposite strategy. Instead of long nonlocal Lévy jumps in
space Berkowitz, Scher and co-workers [35–41] showed
that the CTRW framework with a power-law trapping time
PDF is the key feature needed to explain the observed data;
see also Ref. [16]. Physically, this is the result of long
trapping events in geometrically induced dead ends found
in strongly disordered porous media. Specifically, based on
field experiments and extensive modeling, the trapping
time PDF is ψðτÞ ∼ τ−ð1þβÞ, and importantly, in many cases
1 < β < 2 [38,39]. Here the mean trapping time is finite,
while the variance diverges. In this case, Eq. (1) is certainly
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not valid. To see this, consider a CTRW with a finite
variance of jump lengths, so μ ¼ 2, and then as mentioned,
if we take β → 2, we get the wave equation, which is
completely irrelevant for the transport under study. Thus, so
far, the Berkowitz-Scher theoretical framework is based on
a random walk picture [37] and not on a governing
fractional advection-diffusion equation. Both the CTRW
and the BSMW frameworks and the experiments in the
field agree on one thing: Advection diffusion is anomalous
and nonsymmetric [39,42–44] however otherwise these
schools promote widely different philosophies.
One goal of this Letter is to promote a better under-

standing of the meaning of the fractional space derivatives
in transport equations. As mentioned in the literature, these
are associated with LFs; however, we show here that they
are actually related to the long-tailed PDF of trapping
times, provided that 1 < β < 2. The mentioned biased
CTRW is known to exhibit superdiffusion hðX − hXiÞ2i ∝
t3−β [45]; however, this as a stand-alone does not imply a
connection to LFs or fractional space kinetic equations. The
first important conceptual step toward a unification of LFs
and biased CTRWwas given byWeeks et al. [46,47]. In the
presence of bias, an observer in a reference frame moving
with the mean speed set by the advection will view the
power-law trapping times of the CTRW framework as if the
particle is performing large jumps in space. Our challenge
is threefold. First we want to extend this idea into a
fractional equation showing the role of fluctuations.
Second, we wish to develop a mathematical tool capable
of dealing with a wide variety of applied problems ranging
from calculations of breakthrough curves (see below),
effect of time-dependent fields (omnipresent in field experi-
ments), and different boundary conditions by far extending
[42–47]. In essence, this framework is the continuum
fractional diffusive description of a very large class of
random walk processes. Finally, after deriving the frac-
tional equation for the Berkowitz-Scher transport, we will
be in the position to compare it to the BSMW LF method.
The fractional advection-diffusion-asymmetry equation

(FADAE) investigated in this Letter reads

∂
∂tP ¼ D

∂2

∂x2 P − V
∂
∂xP þ S

∂β

∂ð−xÞβ P: ð2Þ

The first two terms on the right-hand side of Eq. (2) are the
standard diffusion and drift terms, and the last term is the
modification we propose. The operator ∂β=∂ð−xÞβ is a
Riemann-Liouville fractional derivative [2,7] of order
1 < β < 2; see the Supplemental Material [48]. The
Fourier transform of this operator acting on some test
function is F ½dβgðxÞ=dð−xÞβ� ¼ ð−ikÞβg̃ðkÞ, where g̃ðkÞ is
the Fourier transform of gðxÞ. In contrast to the spatial
Riemann-Liouville derivatives in Eq. (2), the generalized
Laplacian operators in Eq. (1) are symmetric Riesz deriva-
tives [9], where F ½∇μgðxÞ� ¼ −jkjμg̃ðkÞ. Further, in Eq. (2)

we have no fractional time derivatives, and hence, obviously
it is very different from the standard fractional diffusion
Eq. (1). Here, D describes normal diffusion, V controls the
drift, while S is the symmetry breaking parameter. We now
explain the meaning of Eq. (2) and its extensions.
When initially Pðx; tÞjt¼0 ¼ δðxÞ, namely, the packet of

particles is localized on the origin, and when the transport
coefficients are time independent and for free boundary
conditions, the solution is obtained using Fourier trans-
form. Let P̃ðk; tÞ be the Fourier pair of Pðx; tÞ, then Eq. (2)
gives

P̃ðk; tÞ ¼ exp ½−Dk2t − ikVtþ Sð−ikÞβt�: ð3Þ

Thus, the solution is a convolution of a Gaussian and a
nonsymmetric Lévy density [49–53]. These correspond to
limit distributions of sums of independent identically
distributed random variables described by thin- and
fat-tailed densities, respectively. More specifically, we
denote LβðyÞ as the asymmetrical Lévy density whose
Fourier transform is exp½ð−ikÞβ�, and hence, Pðx; tÞ ¼
Lβ½x=ðStÞβ�ðStÞ−β ⊗ exp½−ðx−VtÞ2=4Dt�= ffiffiffiffiffiffiffiffiffiffiffi

4πDt
p

, where
⊗ is the convolution symbol [48,54].
Model.—We treat the problem using the assumption that

the particle will wait for some random time τ between two
successive jumps. This is exactly the framework of the
CTRW that describes a particle performing random inde-
pendent steps x determined by the PDF fðxÞ, and the
waiting time τ distributed according to ψðτÞ [7,11,43–47].
All the waiting times and the jump lengths are independent.
We consider ψðτÞ ∼ βðτ0Þβτ−1−β, and as mentioned,
1 < β < 2. The timescale τ0 together with the finite mean
waiting time hτi ¼ R

∞
0 τψðτÞdτ is important. The proba-

bility of observing N steps at time t is [55,56]

QtðNÞ ∼ 1

ðt=t̄Þ1=β Lβ

�
N − t=hτi
ðt=t̄Þ1=β

�
ð4Þ

with t̄ ¼ hτi1þβ=½ðτ0ÞβjΓð1 − βÞj�. This equation is valid
for large times and large N; for example, the mean number
of jumps hNi ∼ t=hτi is large. Equation (4) means that Lévy
statistics are applicable for the shifted observable N − hNi.
For the jump length distribution fðxÞ, we assume that the
mean size of the jumps is a and the variance is σ. For
example, in the simulations below, the PDF of jump size is
Gaussian

fðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp

�
−
ðx − aÞ2
2σ2

�
: ð5Þ

The parameter a is the bias, and the mean position of the
particle after N steps is Na; hence, on average the packet of
particles starting on the origin will be on at=hτi. Clearly,
this modeling implies that we do not assume fat-tailed jump
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length distributions, unlike the LF picture in the BSMW
framework [48].
In the CTRW, the position of the particle after N steps is

X ¼ P
N
i¼1 xi, and thus, it depends both on the microscopic

displacements xi and the random number of steps N. By
conditioning on a specific outcome of N displacements,
the PDF of finding the particle at X at time t is
PCTRWðX; tÞ ¼

P∞
N¼0QtðNÞPðXjNÞ. We are interested

in the long time limit since in this limit N is large; hence,
we replace PðXjNÞwith the Gaussian, and similarly replace
QtðNÞ with the Lévy distribution Eq. (4). Switching from
summation to integration, in the long time limit we find

PCTRWðX; tÞ ∼
Z

∞

0

Lβ

�
N − t=hτi
ðt=t̄Þ1=β

�
exp ð− ðX−aNÞ2

2σ2N Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2N

p
ðt=t̄Þ1=β

dN:

ð6Þ

This idea is also known as the subordination of the spatial
process X by the temporal process for N and is routinely
considered in the literature for β < 1; see Refs. [20,57]. We
already mentioned our intention to derive the spatial
derivative usually associated with Lévy spatial jumps using
the perfectly Gaussian jump statistics in space, and that is
what we do next. In the long time limit, we find

PCTRW ∼
Z

∞

−∞
LβðyÞ

exp
n
− ½X−at=hτi−ayðt=t̄Þ1=β �2

2σ2t=hτi
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2t=hτi

p dy: ð7Þ

Technically, this limit is obtained with a change of variables
to ξ ¼ ðX − at=hτiÞ=aðt=t̄Þ1=β and ξ is kept fixed while
t → ∞ [48]. We now take the time derivative of the Fourier
transform of Eq. (7) and find

∂P̃ðk; tÞ
∂t ¼ −

σ2

2hτi k
2P̃ðk; tÞ − ik

a
hτi P̃ðk; tÞ

þ ð−ikÞβ a
β

t̄
P̃ðk; tÞ: ð8Þ

This is the Fourier representation of Eq. (2) when we
identify the transport constants

D ¼ σ2

2hτi ; V ¼ a
hτi ; S ¼ aβ

t̄
: ð9Þ

The two formulas for D and V are standard relations in the
theory of advection diffusion. To summarize, the FADAE
(2) describes the biased CTRW process, and this has several
consequences which are now discussed.
The importance of bias.—An interesting effect is that in

the absence of bias, i.e., a ¼ 0, we get S ¼ 0; hence, the
anomaly is present only when we have advection. Since
S ¼ 0 implies normal diffusion, in the case of weak
advection the solution exhibits nearly normal behavior

even for very long times, an effect crucial for experiments.
Further, Eq. (9) shows how the two transport coefficients S
and V are generally not independent. To see this, consider
linear response theory. Then, we have a ∼ F where F is the
external force field, and we have V ∼ F and S ∼ Fβ,
a prediction that could be tested in experiments.
Packets in two dimensions.—The fact that the asymme-

try constant S is bias dependent leads to the following
interesting prediction in two dimensions. Imagine the bias
is directed in the x direction, then the distortion of the
packet of particles is found only along the x axis. In other
words, the diffusion in the perpendicular y direction will be
perfectly normal. In the Supplemental Material [48], we
extend our mathematical treatment of the problem to two
dimensions. Here we present this effect graphically in
Fig. 1, where the asymmetrical oval-like shape of the
spreading packet is clearly visible, with the left tail broader
than the right one. Similar experimental observations were
reported in Refs. [38,58]. The left tail seen clearly in the
figure is due to trapping of particles far lagging behind the
mean position of the packet, and this as we showed is
modeled with the asymmetry operator ∂β=∂ð−xÞβ in
Eq. (2). Thus, the physical interpretation of the fractional
space derivatives in the FADAE should be made with care,
as it does not necessarily mean that the process exhib-
its LFs.
Temporal variations of the mean velocity a=hτi are often

present in the real world and tested experimentally in
Ref. [41]. We explore this issue now using a time-
dependant but piecewise constant bias aðtÞ [41]. Indeed,

FIG. 1. Packets of particles released from an origin in two
dimensions with β ¼ 3=2, time t ¼ 200 where the mean waiting
time is hτi ¼ 0.3 and τ0 ¼ 0.1. The bias is pointing to the x
direction, while it is absent along the y axis, and this creates
packets distorted in the direction of the field. The symmetry
breaking effect is visibly stronger as the bias level is increased.
Here we show how simulations of the CTRW process and the
analytical solutions of the FADAE nicely match. For theory,
we use Eq. (9) which gives D ¼ 41.7, V ¼ a=0.3, and
S ¼ a3=2=0.44; the bias a is provided in the figure, while in
the y direction D ¼ 41.7, and S ¼ V ¼ 0. For further details on
simulations, see the Supplemental Material [48], for example,
a perfect agreement between theory and simulations without
fitting for the one-dimensional CTRW.
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in controlled experiments, the velocity V can be modified,
and then theoretical predictions can be tested in a nontrivial
setting. This example will demonstrate the power of the
fractional framework, as it allows for a semianalytical
solution of the rather complex behavior and present
physical effects related to the magnitude of the bias. We
consider four stages of the transport [41]: (i) We use bias
a ¼ 1, (ii) we then sharply increase a to a value a ¼ 3.6,
then (iii) we decrease the value then bias to a small number
a ¼ 0.09, and finally (iv) return to the bias in state (i). All
along the second length scale σ ¼ 5 is fixed. The time
lapses of each stage are clearly indicated in Fig. 2, while the
derivation of analytical results is left to the Supplemental
Material [48]. Note that as we modify the bias a, we are
effectively modifying V and S while D remains fixed; see
Eq. (9). The essential idea behind the analytical approach is
that the final state of each stage serves as an initial
condition to the spatial distribution of the next stage. In
Fig. 2 (curve A) this analytical method is compared to the
numerical solution of the CTRW with β ¼ 3=2, finding
excellent agreement. We also present the case of a constant
time-independent a ¼ 1 (curve B). The concentration
Pðxb; tÞ at some fixed xb presented in Fig. 2 is called a
breakthrough curve and it is commonly observed in the
field of contaminant spreading in hydrology. Figure 2
clearly demonstrates the excellent quantitative agreement
between theory and simulation, in a regime of dynamics
which is close to real life experiments and far from trivial.
Hence, we are confident that our tool, the FADAE, is a
useful one.
Lévy flights and the interpretation of experiment.—The

CTRW process with long-tailed PDFs is an excellent

model for transport in a wide variety of systems, for
example, porous media; hence, the governing FADAE
(2) is deeply related to transport in many physical systems

]7,15,19,43,59–62 ]. Still, it is interesting to compare our
approach to the fractional model of LFs that reads [29,63]

∂PLF

∂t ¼ −V
∂PLF

∂x þ K

�
q

∂μ

∂ð−xÞμ þ p
∂μ

∂xμ
�
PLF: ð10Þ

Clearly, this equation is very different from ours; in fact, in
some sense it is more general as compared with Eq. (2),
as it describes a general class of skewed processes with the
phenomenological parameters p and q. In Ref. [31],
the authors fit experimental contaminant data and report
V ¼ 0.8 m=h, D ¼ 0, μ ¼ 1.51, K ¼ 2.8 m1.51=h, q ¼ 1,
and p ¼ 0 to match the breakthrough curves. Based on this,
one may naively interpret the data as stemming from a LF
process. However, we realize that these parameters imply,
based on our notation Eq. (2), a strong bias in the long time
limit of the CTRW. This highlights that the data are
consistent with a CTRW with long-tailed trapping times.
To summarize, using p ¼ 0 in Eq. (10) is consistent with
both a LF picture promoted by the BSMW and a CTRW
with broad-tailed waiting times.
To distinguish between these two approaches, one needs

to analyze the trajectories of the process, not the packet
of the spreading particles. More precisely, the CTRW
approach and LFs method can give the same predictions
for the positional distribution, but the interpretation that a
model with fractional space derivatives always implies LFs
is wrong. In that sense, we claim that the two competing
methods are identical (in some limit relevant to experi-
ments) from the point of view of distributions but the
particles trajectories widely differ.
Extensions with subordination.—A key formula is the

transformation Eq. (6). It shows how to transform a normal
process to an anomalous one, for the case 1 < β < 2, and as
mentioned, this idea is called subordination. In Eq. (6), time
t is the laboratory time, and N is sometimes referred to as
operational time. The idea is simple, N, which is actually
the random number of steps in the process, is distributed
according to Lévy statistics, as expected from the gener-
alized central limit theorem. We then transform the
Gaussian process in the operational time N to the labo-
ratory framework with what we call a Lévy transformation;
see Eq. (6). This method can be extended to include cases
with different boundary conditions, different spatially
dependent force fields, stochastic trajectories, etc., and
hence, the mathematical approach we presented is versatile
and far more general than what we considered here.
Mean square displacement.— Throughout the manu-

script, we focus on the typical fluctuations of the process.
The rare events influence the density Pðx; tÞ in the vicinity
of x ≃ 0 [44]. Here, Eq. (2) does not work. In that limit,
the probability of finding these particles is very small, as

0 100 200 300 1,000

0

5

10

15

x 10
−4

time t

stag
e i

stag
e iii

stag
e ii

stag
e iv

A

B

FIG. 2. Particles are released on the origin at time zero and then
the density on xb is recorded versus time. Such breakthrough
curves present contaminant spreading from a source (say, the
upper part of a stream) to some target on xb, here xb ¼ 1800. Here
we present the solution of the FADAE and compare it with the
CTRWsimulationswith β ¼ 3=2without fitting. The biasa is time
dependent, and as explained in the text, the dynamics has four
stages as indicated in the graph, e.g., stage i, 0 < t < 100, etc.
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expected for a biased process. In fact, such a cutoff exists
also for the diffusion equation, where the telegraph
equation can be used to describe far tails of the density
of particles. However, in the present case, rare events
control the behavior of the mean square displacement,
which exhibits superdiffusion. It indicates that Eq. (2)
cannot give a valid mean square displacement [43,44]; in
this sense, CTRWs are of course very different compared
to LFs.
Summary.—The FADAE (2) is controlled by three

transport coefficients D, V, and S given in Eq. (9). This
framework is valuable in many CTRW systems, ranging
from the field of contaminant spreading and geophysics to
transport random environments, for example, the quenched
trap model [59,64]. What is remarkable is that the long-
tailed PDF of trapping times, which for 0 < β < 1 implies a
fractional time derivative, is transplanted into a spatial
space derivative when 1 < β < 2. And long-tailed PDFs of
jump sizes, like in LFs, are not a basic requirement for
fractional space operators in transport equations, rather
these are related to Lévy statistics applied to the number of
jumps in the process. In this sense, we have provided a new
physical and widely applicable interpretation of fractional
space derivatives, within the context of fractional diffusion.
More importantly, we have provided a toolbox with which
onemay analyze advection diffusionwith different boundary
conditions (with subordination) and with time-dependent
fields.
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Kinetics for Cold Atoms Diffusing in Optical Lattices, Phys.
Rev. Lett. 108, 230602 (2012).

[23] R. Metzler, E. Barkai, and J. Klafter, Anomalous Diffusion
and Relaxation Close to Thermal Equilibrium: A Fractional
Fokker-Planck Equation Approach, Phys. Rev. Lett. 82,
3563 (1999).

[24] M. Magdziarz, A. Weron, and J. Klafter, Equivalence of the
Fractional Fokker-Planck and Subordinated Langevin Equa-
tion: The Case of a Time-Dependent Force, Phys. Rev. Lett.
101, 210601 (2008).

[25] W. Deng, Finite element method for the space and time
fractional Fokker-Planck equation, SIAM J. Numer. Anal.
47, 204 (2009).

[26] B. I. Henry, T. A.M. Langlands, and P. Straka, Fractional
Fokker-Planck Equations for Subdiffusion with Space-and
Time-Dependent Forces, Phys. Rev. Lett. 105, 170602 (2010).

[27] A. V. Chechkin, R. Gorenflo, and I. M. Sokolov, Fractional
diffusion in inhomogeneous media, J. Phys. A 38, L679
(2005).

[28] S. Fedotov and D. Han, Asymptotic Behavior of the
Solution of the Space Dependent Variable Order Fractional

PHYSICAL REVIEW LETTERS 125, 240606 (2020)

240606-5

https://doi.org/10.1007/BF00879562
https://doi.org/10.1007/BF00879562
https://doi.org/10.1063/1.528578
https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1063/1.1535007
https://doi.org/10.1063/1.166272
https://doi.org/10.1016/0893-9659(96)00089-4
https://doi.org/10.1007/BF02179257
https://doi.org/10.1007/BF02179257
https://doi.org/10.1016/j.physa.2005.11.024
https://doi.org/10.1016/j.physa.2005.11.024
https://doi.org/10.1088/0253-6102/62/4/09
https://doi.org/10.1088/0253-6102/62/4/09
https://doi.org/10.1103/PhysRevLett.115.110601
https://doi.org/10.1103/PhysRevLett.115.110601
https://doi.org/10.1140/epjb/e2016-70578-3
https://doi.org/10.1002/2017GL074326
https://doi.org/10.1088/1742-5468/aaf630
https://doi.org/10.3389/fphy.2019.00159
https://doi.org/10.3389/fphy.2019.00159
https://doi.org/10.1103/PhysRevB.12.2455
https://doi.org/10.1103/PhysRevE.63.046118
https://doi.org/10.1103/PhysRevLett.108.093002
https://doi.org/10.1103/PhysRevLett.108.230602
https://doi.org/10.1103/PhysRevLett.108.230602
https://doi.org/10.1103/PhysRevLett.82.3563
https://doi.org/10.1103/PhysRevLett.82.3563
https://doi.org/10.1103/PhysRevLett.101.210601
https://doi.org/10.1103/PhysRevLett.101.210601
https://doi.org/10.1137/080714130
https://doi.org/10.1137/080714130
https://doi.org/10.1103/PhysRevLett.105.170602
https://doi.org/10.1088/0305-4470/38/42/L03
https://doi.org/10.1088/0305-4470/38/42/L03


Diffusion Equation: Ultraslow Anomalous Aggregation,
Phys. Rev. Lett. 123, 050602 (2019).

[29] D. A. Benson, R. Schumer, M. M. Meerschaert, and S. W.
Wheatcraft, Fractional dispersion, Lévy motion and the
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metric Lévy flights, J. Phys. A 52, 454004 (2019).

[54] C.Otiniano, T. Sousa, andP.Rathie, Stable randomvariables:
Convolution and reliability, J. Comput. Appl. Math. 242, 1
(2013).
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