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Quantum many-body systems out of equilibrium can host intriguing phenomena such as transitions to
exotic dynamical states. Although this emergent behaviour can be observed in experiments, its potential for
technological applications is largely unexplored. Here, we investigate the impact of collective effects on
quantum engines that extract mechanical work from a many-body system. Using an optomechanical cavity
setup with an interacting atomic gas as a working fluid, we demonstrate theoretically that such engines
produce work under periodic driving. The stationary cycle of the working fluid features nonequilibrium
phase transitions, resulting in abrupt changes of the work output. Remarkably, we find that our many-body
quantum engine operates even without periodic driving. This phenomenon occurs when its working fluid
enters a phase that breaks continuous time-translation symmetry: The emergent time-crystalline phase can
sustain the motion of a load generating mechanical work. Our findings pave the way for designing novel
nonequilibrium quantum machines.
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Future-generation nanomachines will require powerful
small-scale engines whose energy output can be channeled
into mechanical work storage. Proof-of-principle experi-
ments have shown how such microscopic flywheels can be
realized for working systems with few internal degrees of
freedom like a single atom [1–5]. Yet it is less clear how the
output of a quantum engine can be converted into motive
power if its working fluid consists of a many-body system.
During the past years, much progress has been made

in the design of quantum engines that operate far from
equilibrium and use nonthermal sources of energy [6–12].
The natural next step is to explore how mechanical work
can be generated in such nonequilibrium settings, how
collective effects, like phase transitions, affect the work
output, and whether they could enable novel modes of
operation.
In this Letter, we propose a new type of many-body

quantum engine that is driven by time-translation symmetry
breaking [13–16] and does not require a periodic protocol.
Our engine autonomously delivers mechanical work to an
external load as a result of its working fluid hosting a phase
with broken (continuous) time-translation symmetry. Such
a time-crystal phase features a time-dependent asymptotic
state even in the absence of external modulation of the
dynamical parameters [13–16]. We show that such an
exotic device can be implemented with a general cavity-
atom setting, which can, in principle, be realized in
experiments with cold atoms [17–19]; see the sketch in
Fig. 1. In this setup, one mirror of the cavity is fixed, while
the other one is attached to a microspring and can move

around its equilibrium position [20–23]. By driving the
atoms inside the cavity with a periodically modulated laser,
the free mirror, which plays the role of a classical load,
can be forced into sustained oscillations from which we
determine the work delivered by the engine [24–30].
Our numerical analysis reveals two quite remarkable

effects. First, the system features a series of nonequilibrium
phase transitions leading to sudden changes of the asymptotic
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FIG. 1. Cavity-atom quantum engine. The atomic working fluid
is held in an optical cavity with one movable mirror (mass m)
attached to a spring (characteristic frequency ω). The cavity
length L ¼ L0 þ x decomposes into an equilibrium length L0 and
a small deviation x. The motion of the mirror is damped by
mechanical friction (proportional to the coefficient γ) and driven
by thermal fluctuations and the radiation pressure inside the
cavity. Each atom is described as a two-level system with ground
state jgi, excited state jei, and energy splitting ωat. Excitations are
generated and destroyed through interactions with a light mode in
the cavity and with the driving laser (Rabi frequency Ω and
detuning Δ). The cavity loss rate is κ.
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cycle. Second, even in the absence of an explicit periodic
driving, where one would a priori expect the system to
approach to a stationary state, the oscillatory motion of
the mirror can be sustained as the atomic working fluid
forms a time-crystalline phase [13–16] for properly chosen
parameters.
Beyond illuminating these intriguing many-body effects,

our approach has the key advantage that it admits a clear
thermodynamic interpretation. Since the mirror is effec-
tively classical, its position can be monitored without
disturbing the operation cycle of the engine, thus avoiding
the subtleties of measuring a quantum working fluid. Such
quasiclassical work measurements make it possible to
unambiguously determine the effective output of a quantum
engine. At the same time, they open new ways to probe
collective phenomena in nonequilibrium quantum many-
body systems.
Cavity-atom setup.—We consider the setup of Fig. 1. An

ensemble of N atoms is loaded into an optical cavity with
one movable mirror. Each atom is described as a two-level
system with ground state jgi, excited state jei, and level
splitting ωat. A single light mode is resonant with the cavity
at frequency ωcav. The exchange of photons between atoms
and light field is described by the coupling Hamiltonian

Hint ¼ ℏ
gffiffiffiffi
N

p ðaSþ þ a†S−Þ with S� ¼
XN
k¼1

σðkÞ� : ð1Þ

Here, a and a† are the photon creation and annihilation
operators, respectively, and σ− ¼ jgihej and σþ ¼ σ†− are
the atomic transition operators. The interaction strength is
rescaled by the factor 1=

ffiffiffiffi
N

p
as is common for light-matter

interactions of this type [31–33]. The atoms are further
driven by an external laser, whose frequency is shifted from
ωat by the detuning Δ. In the rotating frame of the laser, the
atomic Hamiltonian is given by [19,34–36]

HL ¼ ℏ

�
ΩðSþ þ S−Þ −

Δ
2
Sz

�
with Sz ¼

XN
k¼1

σðkÞz ; ð2Þ

where σz ¼ jeihej − jgihgj. The Rabi frequency Ω is
determined by the strength of the coherent driving. In
the same rotating frame, the free Hamiltonian of the light
field reads Hph ¼ −ℏδa†a, where δ ¼ ωat þ Δ − ωcav is
the effective detuning of the cavity mode. The loss of
photons from the cavity, at rate κ, is described by the
dissipation superoperator [37–40]

Dph½ρ� ¼ ℏκ

�
aρa† −

1

2
fρ; a†ag

�
:

In the Schrödinger picture, the bare photon Hamiltonian is
given by HS

ph ¼ ℏωcava†a. The frequency of the photons is
connected to the length L of the cavity through the

resonance condition ωcav ¼ nc=ð2LÞ with n being an
integer and c the speed of light. We decompose the length
of the cavity, L ¼ L0 þ x, into an equilibrium contribution
L0 and a deviation x, which accounts for small oscillations
of the first mirror; see Fig. 1. Expanding the Hamiltonian
HS

ph to first order in x=L0 yields [20–22]

HS
ph ≈ ℏω0

cav

�
1 −

x
L0

�
a†a with ω0

cav ¼
nc
2L0

: ð3Þ

This result shows that the position of the mirror and the
number of photons are coupled [20–22,29]. In fact, the
Hamiltonian in Eq. (3) describes a mechanical force on the
mirror, which emerges from the radiation pressure inside
the cavity.
In addition, the light field in the cavity mediates an

effective excitation-exchange coupling between the atoms,
which arises from the interaction Hamiltonian (1) when the
electromagnetic field is traced out [41,42]. In the weak-
coupling regime κ ≫ g=

ffiffiffiffi
N

p
, the state of the atoms ρt

follows an effective Lindblad equation [18,37–40,43]:

_ρt ¼ −
i
ℏ
½H̃; ρt� þ

1

ℏ
D̃½ρt�: ð4Þ

Upon neglecting second-order contributions in the
relative displacement x=L0, the corresponding effective
Hamiltonian and dissipation superoperator become,
respectively,

H̃ ¼ HL þ ℏg
N

�
C0 −

C1

L0

x

�
SþS− ð5Þ

and

D̃½ρ� ¼ ℏg
N

�
Γ0 −

Γ1

L0

x

��
S−ρSþ −

1

2
fρ; SþS−g

�
; ð6Þ

with the dimensionless constants [43]

C0 ¼
4δ0g

κ2 þ 4δ20
; Γ0 ¼

4κg
κ2 þ 4δ20

;

C1 ¼
ω0
cav

δ0
C0

4δ20 − κ2

4δ20 þ κ2
; Γ1 ¼ ω0

cavΓ0

8δ0
κ2 þ 4δ20

and the detuning parameter δ0 ¼ ωat þ Δ − ω0
cav.

Dynamics of the mirror.—The mirror is a massive
object, whose ground state energy is small compared to
the typical energy of thermal excitations. That is, we have
ℏω ≪ kBT, where ω is the characteristic frequency of the
spring attached to the mirror (see Fig. 1) and T is the base
temperature of the setup. The position of the mirror can
thus be treated as a classical degree of freedom, whose
dynamics is governed by the Langevin equation [27,44]
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mẍþ γ _xþmω2x ¼ ft þ ξt; ð7Þ

here, γ is the damping coefficient, m is the mass of the
mirror, and the stochastic force ξt, which describes thermal
fluctuations, obeys E½ξt� ¼ 0 and E½ξtξs� ¼ 2γkBTδðt − sÞ.
The symbol E indicates average over all realizations [45].
The deterministic force ft ¼ −h½ð∂=∂xÞHS

ph�it is due to
the light-mediated coupling between the mirror and the
working fluid. In the effective picture of an interacting
atomic gas, it is, up to second-order corrections in the
displacement of the mirror x=L0, given by [43]

ft ≈ ℏ
g
N
ω0
cav

κL0

�
Γ0 − Γ1

x
L0

�
hSþS−it; ð8Þ

where angular brackets denote the average with respect to
the state of the atomic system ρt. Together with this
relation, the effective master equation (4) and the
Langevin equation (7) determine the joint dynamics of
the mirror and the working fluid.
Finite-density limit.—We now consider the limit of large

atom numbers, N ≫ 1, focusing on the case where the
linear density of atoms in the cavity, D0 ¼ N=L0, is fixed.
This assumption, which is typically well justified in
experiments, makes it possible to simplify our mathemati-
cal model. First, the constants C1 and Γ1, appearing in
Eqs. (5) and (6), become irrelevant for the dynamics, as
they are of the order of N−2, and can, thus, be neglected.
Second, the normalized correlation functions hSþS−i=N2

factorize, since emergent correlations between different
atoms are wiped out in the large-N limit [46,47]. That is, we
have hSþSþi=N2 ∼ sþs− with s� ¼ limN→∞hS�i=N.
As a result, the collective atomic variables s� and sz ¼

limN→∞hSzi=N obey the mean-field-type dynamical equa-
tions [43,47]

_sþ ¼ −iΩsz − iΔsþ − igC0szsþ þ g0Γ0

2
szsþ;

_sz ¼ 2iΩðs− − sþÞ − 2gΓ0sþs−; ð9Þ

and the Langevin equation (7) becomes

mẍþ γ _xþmω2x ¼ ℏ
gω0

cavΓ0D0

κ
sþs− þ ξt; ð10Þ

since the expression (8) for the deterministic force reduces
to

ft ¼ ℏ
gω0

cavΓ0D0

κ
sþs− ð11Þ

in the thermodynamic limit. Equations (9) and (10) provide
a complete dynamical model of our engine in terms of the
four variables s�, sz, and x.

Work extraction through the mirror.—We first consider
a conventional isothermal engine cycle, where the detuning
Δ is periodically modulated to provide energy input. For
simplicity, we focus on a quench protocol, whereΔ ¼ Δmax
during the first half of the period and Δ ¼ Δmin during the
second half, as shown in Fig. 2(a). The period tc of the
driving is resonant with the eigenfrequency of the mirror,
tc ¼ 2π=ω. As a consequence of the driving, the state of the
atoms ρt and the average position of the mirror approach an
asymptotic cycle with period tc. As initial conditions, we
consider all atoms in their ground state and the mirror in its
equilibrium position (x0 ¼ _x0 ¼ 0). However, at least at a
qualitative level, our results do not depend on the specific
initial conditions.
Owing to energy conservation, the average amount of

work that is transferred from the atomic system to the
mirror plus the energy contribution of the thermal fluctua-
tions must be equal to the average heat dissipation due to
mechanical friction. Hence, the power delivered by the
engine per cycle is given by

Pav ¼
γ

tc

Z
tc

0

dt
�
E½v2t � −

kBT
m

�
¼ γ

tc

Z
tc

0

dtv̄2t ; ð12Þ

as shown in Ref. [43], together with a thermodynamic
description of our engine, by using tools of stochastic
thermodynamics. Here, vt ¼ _xt is the velocity of the mirror,

Force on 
the mirror

Position 
Velocity

Time in the cycle 

(a)

0.2

0.1

0

-0.1

(b)

0

1

0.5 3
0

Rabi frequency

D
et

un
in

g

Average power

0

0
-0.4

0.8

2

2
0.3

2
0.6

2
0.9

2

0.8

-0.4
0 2

FIG. 2. Periodic driving. (a) Periodic motion of the mirror
driven by the many-body engine. The average velocity of the
mirror, v̄t, is given in units of v0 ¼ ðω0

cav=ωÞðℏD0=mÞ, the
average position x̄t in units of v0=ω, and the force in units of
ℏω0

cavD0. Time is given in units of ω−1. This representative
cycle is obtained for ωat − ω0

cav ¼ 0.1ω, Δmax ¼ 2ω, and
Δmin ¼ κ ¼ g ¼ ω. The velocity v̄t, averaged over noise realiza-
tions, is not always zero during the cycle, proving that the engine
constantly delivers energy to the mirror through the force ft.
(b) Power output, in units of mv20ω, as a function of Ω=ω and
Δmin=ω with fixed Δmax − Δmin ¼ ω. In the insets, we show the
mean velocity and the force for Δmin ¼ 0.2ω and two slightly
different values of the Rabi frequency, Ω=ω ¼ 1.55 and 1.56, for
which the power output differs substantially. The force profile
changes abruptly from an oscillatory pattern to a two-plateau-like
shape indicating a nonequilibrium phase transition. Numerical
results have been obtained by simulating the dynamics of the
mirror for sufficiently long times, such that the system has
converged to its asymptotic cycle.
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γkBT=m represents the thermal energy dissipated by
mechanical friction, and v̄t is the velocity of the mirror
averaged over noise realizations—which can be obtained
from Eq. (10) with ξt ¼ 0.
In Fig. 2(b), the generated mean power Pav is plotted as a

function of the Rabi frequency Ω and the lower level of the
detuning Δmin. We find that Pav is positive over a large
range of parameters. This result proves that our engine is
able to produce usable work by sustaining the periodic
motion of the mirror against constant damping. Quite
remarkably, the average power output features discontinu-
ous jumps signalling nonequilibrium phase transitions in
the asymptotic periodic state as illustrated by the insets in
Fig. 2(b). This new type of phase transition generalizes
steady-state nonequilibrium ones to periodically driven
settings. The power output acts as an order parameter
which can be used to unveil the occurrence of sudden
changes in the asymptotic periodic dynamics of the many-
body working fluid.
Time-translation symmetry breaking.—Once the time-

dependent modulation of the detuning is turned off, one
would expect the mirror to come to rest as the working fluid
settles to a steady state. However, our analysis shows that,
for properly chosen parameters, the engine still drives
sustained oscillations of the mirror, even if the detuning is
fixed. This a priori surprising phenomenon arises as a
consequence of the working fluid entering a dissipative
time-crystal phase, which breaks the (continuous) temporal
translation symmetry of the generator. This exotic phase
emerges when the asymptotic atom state is time dependent,
despite the dynamical generator being time independent
[15,16]. The engine thereby acquires a new operation
mechanism, which does not require cyclic control protocols
and instead makes it possible to generate periodic motion
from steady-state driving, as illustrated in Fig. 3(a).
In the absence of a periodic protocol, there is no natural

recurrence time for the long-time dynamics which, in
general, may or may not approach an asymptotic cycle.
To explore this regime quantitatively, we thus need to
determine the average power of the engine by calculating
the average heat loss generated by the mirror over a long
time window. Namely, we compute the power as

Pav ¼ lim
tobs→∞

γ

tobs

Z
tobs

0

dtv̄2t :

If the position of the mirror settles on an asymptotic cycle
with a well-defined period, this definition coincides with
the one given in Eq. (12).
The results of our analysis are summarized in Fig. 3(b).

In the weak photon-loss regime, i.e., for κ ≪ Ω, the
working fluid settles to a stationary state where no mechani-
cal work is produced. Approximately at κ ∼ 1=Ω, for the
specific choice of parameters, a phase transition occurs, and
the average power abruptly increases as the mirror breaks

into sustained oscillations. This effect is most pronounced at
moderate photon-loss rates, where our time-crystal engine
delivers the largest output.
The working mechanism of this new operation mode of

the engine can be understood as follows. The effective
dissipation constant Γ0 decays with large photon-loss rates
κ. In this regime, characterized by weak dissipation on the
atoms (Γ0 ≪ 1), the dynamics of the working fluid is
dominated by the Rabi driving at frequency Ω. As a result,
the steady-state manifold of the atomic system becomes
degenerate, and long-lived oscillations within this manifold
emerge [15,16]. The asymptotic state of the system is,
therefore, time dependent and generates coherent oscilla-
tions leading to a varying force on the mirror. When atomic
dissipation dominates, coherent oscillations are suppressed
and the working fluid approaches a time-invariant steady
state. In this case, the radiation pressure on the mirror is
constant and the mirror comes to rest.
Discussion.—We have developed a general framework for

the dynamical description of many-body quantum engines,
which includes the external load as a semiclassical degree of
freedom. This approach makes it possible to determine the
performance of the engine directly by monitoring the coupled
dynamics of both the working fluid and the load.
This perspective allowed us to obtain two key results.

First, in the periodic mode of operation, where the engine
is driven by modulations of an external control parameter,
a new type of nonequilibrium phase transitions emerges.
The power output of the engine thereby plays the role of an
order parameter.
Second, we have demonstrated that, even when the

engine is not driven through a periodic protocol and is,
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FIG. 3. Time-crystal quantum engine. (a) Mean velocity of the
mirror in units of v0 ¼ ðω0

cav=ωÞðℏD0=mÞ as a function of time
(in units of ω−1) for two different photon-loss rates. For
κ=ω ¼ 0.5, the mirror comes to rest, while sustained oscillations
emerge for κ=ω ¼ 1.5. For this plot, we have set Δ ¼ 0,
ωat − ω0

cav ¼ 0.1ω, and Ω ¼ g ¼ ω. (b) Average power output,
in units of mv20ω, as a function of the photon-loss rate κ and the
Rabi frequency Ω, both in units of ω. The remaining parameters
are the same as before. Along the dashed line κΩ ∼ 1, a phase
transition occurs, where the average power jumps to a finite value
as the working fluid spontaneously forms a time crystal. The scale
has been truncated at 0.2, but significantly larger values for the
work output (Pav > 2) are found. The maximum value, for the
chosen parameters, is given by Pav ∼ 2.8.
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thus, described by a time-independent generator, it can still
deliver mechanical work. The emergence of this new
regime is due to a nonequilibrium phase transition in the
atomic working fluid toward an exotic state that features
sustained coherent oscillations. This dynamical time-
crystalline phase [13–16] can drive the motion of the load
without relying on a time-dependent control protocol. Our
approach paves the way to explore new mechanisms of
power generation enabled by collective many-body effects
and, at the same time, provides a natural description of
many-body quantum engines.
Our predictions on the power output of our engine can be

tested with current technology in cavity-atom experiments
[17,18,48–52], and our general numerical analysis covers a
wide range of different setups. As we show in Ref. [43], the
broken time-translation symmetry regime is robust to the
presence of additional atomic interactions of density-
density type and of excitation-exchange type. However,
in the presence of completely generic perturbations, we
expect the time-translation symmetry to be restored at long
times and a survival of the time-crystal quantum engine
only as a metastable regime. Still, power generation for
the periodic driving case is stable against any type of
perturbations.
Finally, we note that, for the finite-density case that we

have considered, the efficiency of our engine is effectively
zero in the thermodynamic limit [43]. For finite systems—
or even for different thermodynamic limits keeping L0

finite—the efficiency can be larger than zero. However,
even in the regime considered here, the engine delivers
finite power.
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