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Many-body interactions in topological quantum systems can give rise to new phases of matter, which
simultaneously exhibit both rich spatial features and topological properties. In this work, we consider
spinless fermions on a checkerboard lattice with nearest and next-to-nearest neighbor interactions. We
calculate the phase diagram at half filling, which presents, in particular, an interaction-induced quantum
anomalous Hall phase. We study the system at incommensurate fillings using an unrestricted Hartree-Fock
ansatz and report a rich zoo of solutions such as self-trapped polarons and domain walls above an
interaction-induced topological insulator. We find that, as a consequence of the interplay between the
interaction-induced topology and topological defects, these domain walls separate two phases with
opposite topological invariants and host topologically protected chiral edge states. Finally, we discuss
experimental prospects to observe these novel phenomena in a quantum simulator based on laser-dressed
Rydberg atoms in an optical lattice.
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Introduction.—First proposed by Feynman in the 1980s
[1], quantum simulators are now a reality. These versatile
platforms allow for the simulation of complex quantum
many-body systems in a clean and highly controllable
environment [2]. In particular, cold atoms in optical lattices,
with the dramatic advances in atomic, molecular, and
optical physics, are highly suitable quantum simulators
of many-particle or spin systems with controlled inter-
actions [3]. There, the study of topological insulators with
quantum simulators has become a subject of intense
research within the past decade [4,5]. These exotic materi-
als constitute a new paradigm of quantum matter [6]: they
are characterized by a global order parameter, an integer
called topological invariant, and present topologically
protected surface currents. The quantum simulation of
such phases typically relies on the generation of artificial
gauge fields through Floquet engineering [7–10] or syn-
thetic dimensions [11–13].
Recent studies focused on the interplay between external

gauge fields and interactions [14–17].More strikingly, it has
been shown that it is also possible to induce topology
directly from interactions, hencegiving rise to a spontaneous
symmetry-breaking (SSB) topological phase [18]. For
example, interactions of the same order of magnitude
between nearest neighbors (NN) and next-to-nearest neigh-
bors (NNN) give rise to the celebrated topological Mott
insulator (TMI) [19,20], an anomalous quantumHall (QAH)
phase [21], in diverse geometries, such as hexagonal, Lieb,
checkerboard, and kagome lattices [19,22–30]. To observe

these phases, control over the ratio of interaction strengths is
crucial, and cold atoms constitute a prime candidate to
simulate such phases in experiment [22,23].
In this Letter, we explore the exotic nature of self-

consistent solutions, such as polarons and topological
defects, above the TMI. Remarkably, these solutions appear
thanks to the interplay of the global topological order and
the SSB local order parameter, and are thus absent in
gauge-induced topological insulators. In a SSB lattice
material, incommensurate fillings can favor static solutions
breaking the translational symmetry [31–33]. These sol-
utions, which can also be created in a dynamical way
[34–39], can take the form of small perturbations, or
topological defects in the local order parameter. In the
TMI phase, we are interested in studying the impact of
these inhomogeneities on the global topology of the
system, and vice versa. In order to shed light onto this
question, we abandon the usual assumption of spatially
homogeneous TMI phases [19,22–30] and report two type
of solutions: (i) self-trapped polarons on top
of the topological background and (ii) domain walls
between regions from a different sector of the SSB phase.
Interestingly, these lead to opposite topological invariants
in the same material, and topologically protected chiral
edge states at the domain boundaries.
We start by quantitatively studying the Hartree-Fock

(HF) phase diagram of a checkerboard lattice of spinless
fermions with NN and NNN interactions at half filling.
Such phase diagram is in qualitative agreement with the
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ones obtained with density matrix renormalization group
methods [24,26]. We then study the ground state (GS)
around half filling in the QAH phase, with an unrestricted
Hartree-Fock (UHF) ansatz. The latter is motivated by
previous studies in strongly correlated materials, in which
UHF methods describe the main physics of the doped GS,
up to corrections in the local quantities [40–44]. At low
particle doping, we observe a self-trapped polaron and
study its effect on the background topological SSB phase.
We also analyze the accuracy of the HF method and the
interaction between two polarons. For higher fillings, we
report the appearance of topological defects in the form of
domain walls separating the two sectors of the SSB phase at
half filling and inspect the topological chiral edge states on
top of them. Finally, we discuss prospects of realizing such
phases with cold Rydberg-dressed atoms in optical lattices.
Model.—We consider a Hamiltonian of spinless fermions

on a checkerboard lattice with periodic boundary condi-
tions, depicted in Fig. 1(a), Ĥ ¼ Ĥ0 þ Ĥint, where Ĥ0 is the
quadratic part and Ĥint contains the interactions. On the
one hand, the quadratic part of the fermionic Hamiltonian
[24–26] reads (ℏ ¼ 1)

Ĥ0 ¼ −t
X

hiji
ðĉ†i;Aĉj;B þ H:c:Þ

þ
X

i

X

α¼A;B
η¼x;y

ðJαη ĉ†i;αĉiþ2η;α þ H:c:Þ − μ
X

i

n̂i; ð1Þ

where t stands for the NN hopping amplitude between sites
A and B, Jαη is the NNN hopping amplitude, with η ¼ x, y
and α ¼ A, B, and μ is the chemical potential that controls
the fermionic filling. In the remainder of the Letter, we
also set t ¼ 1, and JAx ¼ JBy ¼ þ0.5 and JAy ¼ JBx ¼ −0.5,
which generates a π flux on each sublattice. Such
Hamiltonian has two bands with a quadratic band touching
at half filling. On the other hand, the interaction part of the
Hamiltonian reads

Ĥint ¼ V1

X

hiji
n̂i;An̂j;B þ V2

X

⟪ij⟫

n̂in̂j ð2Þ

and has NN and NNN density-density repulsive inter-
actions. Such Hamiltonian has a rich phase diagram in
terms of V1=t and V2=t already at the mean-field level, as
will be discussed below.
Phase diagram at half filling.—We treat the interaction

Hamiltonian with a standard HF decoupling, respecting the
Wick’s theorem,

n̂in̂j ≃ n̄in̂j þ n̄jn̂i − n̄in̄j − ξijĉ
†
j ĉi − ξ�ijĉ

†
i ĉj þ jξijj2; ð3Þ

with ξij ¼ hĉ†i ĉji and n̄i ≡ hn̂ii. The HF values ξij and n̄i
are found by determining the self-consistent eigenstates λ
and energies E of the HF Hamiltonian at zero temperature.
We also work with a four-site unit-cell translationally
invariant ansatz [see Fig. 1(b)], which we will refer to as
the restricted Hartree-Fock (RHF) ansatz in the remainder
of the Letter (see Supplemental Material [45]). The phase
diagram, presented in Fig. 1(b), has three insulating phases,
each of them with an order parameter that captures a broken
symmetry: (i) the site nematic insulating phase character-
ized by ρn ≡ jn̄A1

þ n̄A2
− n̄B1

− n̄B2
j, (ii) the stripe insu-

lating phase, with ρs ≡ jn̄A1
− n̄A2

j þ jn̄B1
− n̄B2

j, and (iii) a
QAH phase, with time-reversal symmetry breaking (TRSB)
due to interaction-induced closed loops of imaginary NN
hopping ξQAH ≡ jImðξA1B1

þ ξB1A2
þ ξA2B2

þ ξB2A1
Þj=4. In

order to characterize the topology of the QAH phase, we
obtain its RHF band structure, which shows two lower
filled bands separated from the two upper bands by an
energy gap ΔQAH ¼ 8V1ξQAH. We compute the total
Chern number ν of the filled bands and find ν ¼ �1
[45]. The two possible values of ν account for the twofold
ground-state degeneracy in the interaction-induced QAH
phase, i.e., the current loops can flow in two opposite
directions, and the system reaches one of the two sym-
metry-breaking sectors through a spontaneous TRSB
mechanism [see Fig. 1(b)].
Self-trapped polaron.—We now focus on the system at

low particle doping δ, starting for the case of one extra
particle (δ ¼ 1). In the noninteracting rigid band picture,
the bulk of the system would lose its insulating character, as
the particle would occupy the first single-particle state
above the gap. In order to analyze the interacting system,
hereafter we fix the value of the interactions to V1=t ¼ 2.5
and V2=t ¼ 1.5. We first study the solution of the RHF
ansatz, shown in Fig. 2(a). The self-consistent band
structure exhibits only a slight deformation of the bands
due to interactions and, indeed, we observe the occupation
of a single-particle state above the gap. However, there is
also the possibility of lowering the energy by creating states
inside the gap, which need to be localized in a finite region
of the lattice. In order to capture this scenario, we go one
step further and work without the requirement of spatial

QA
H

site nematic
insulator

stripe insulator

(a) (b)

FIG. 1. (a) The system is described by a Hamiltonian of
spinless fermions Ĥ on a checkerboard lattice, which has NN
and NNN hoppings and interactions. (b) Mean-field phase
diagram of the system at half filling in terms of the NN (V1)
and NNN (V2) interactions. Each SSB phase is represented with a
schematic in the four-sites unit-cell ansatz. For the QAH phase,
the two degenerate SSB solutions are explicitly shown.
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translational invariance of the HF parameters (ξij; n̄i),
known as the UHF ansatz [46,47], on a 24 × 24 unit-cell
lattice. The results are shown in Fig. 2(a): the UHF bands
are deformed in order to accommodate the extra particle,
with the appearance of states inside the insulating gap, and
a decrease of the energy ΔEUHF ≡ hHiUHF − hHiRHF ¼
−0.12t. These midgap states are localized in a finite
region of the lattice, leading to the density cloud shown
in Fig. 2(b). We denote such state as the self-
trapped polaron solution, as the added particle is confined
due to its interaction with the topological background.
Notice that this notion of a self-trapped polaron differs from
the concept of a mobile polaron quasiparticle in a topo-
logical background [48]. Indeed, in this work we focus only
on static properties, as it is not warranted that a study of the
polaron mobility can be made within a coherent quasipar-
ticle picture due to the interaction-induced localization.
The appearance of self-trapped polarons and other

localized excitations has been extensively studied using
the UHF method [31–33] for nontopological phases. We
here show that the topological character of the material
leads to very interesting physics. On the one hand,
Fig. 2(c) shows that, in the polaron region, there is a large
reduction of the order parameter ξQAH, accompanied by a
change of the SSB sector in the inner region [45]. Notice
that this behavior is similar to the one exhibited by the self-
trapped antiferromagnetic polaron observed in the 2D
Fermi-Hubbard model [31], and can be understood as a
collapsed domain wall. On the other hand, and despite the
lack of translational invariance, one can characterize the

topology of the system, by means of the local Chern
number C [49–51]. The latter is a real-space quantity
that exhibits the same integer quantization as the Chern
number ν within the bulk of the material [45]. As shown in
Fig. 2(d), this quantity is not quantized at all inside the
polaron; however, it stabilizes to C ¼ þ1 further away from
the latter. We emphasize that, as in the half-filling case, the
sign of C depends on the ground-state SSB sector. Notice
also that these local fluctuations of C, which are caused by a
spontaneous breaking of translational symmetry, are
reminiscent of those induced by quenched disorder in a
gauge-induced Chern insulator [52].
Configuration interaction analysis.—We use the con-

figuration interaction method [33,53–55] to analyze the
stability of the polaron localization within the UHF
ansatz. That is, for different initial conditions on the
UHF parameters, we get degenerate polarons centered at
different sites, and it is important to check that such
localization is not an artifact of the method. In a nutshell,
in the configuration interaction method, one lowers the
UHF energy by hybridizing several UHF solutions to
restore some of the lattice symmetries spontaneously
broken in each UHF solution. In our case, we restore
the translational invariance of the polaron solution in
smaller checkerboard lattices with up to 2 × 9 × 9 sites
[45]. Our analysis yields a polaron band supporting the
validity of our UHF treatment: the minimum energy of the
band is similar to the UHF energy (with a reduction of
≃0.1%), and this energy corresponds to a plateau of
degenerate states in a region of the band of size jΔkj.
The latter is compatible with a polaron extended over a
finite region with radius lp ≃ 1=jΔkj, as observed in the
UHF solution.
Two polarons.—For two extra particles (δ ¼ 2) we find

two types of self-consistent solutions. The lowest energy
solution is a composite state of two polarons [see Fig. 3(a)].
The inner region of this bipolaron, slightly larger than the
one corresponding to the single polaron, also exhibits a
change in the SSB sector [45]. The other type of solutions
corresponds to two spatially nonoverlapping polarons [see
Fig. 3(b)]. The latter are metastable solutions with a higher
energy than the composite state, which indicates that there
is an attractive interaction between polarons. However, for
large initial separations, individual polarons are likely to be
detectable. In order to characterize the formation of these
metastable solutions, we choose for the initial UHF values
those of a spatial superposition of two single polarons, and
vary their initial separation. Figure 3(c) shows the final
distance between them dp−p as a function of their initial
separation d0p−p. Considering the self-consistent UHF
algorithm as some virtual dynamics for the HF parameters,
we observe a collapse radius d0p−p ≃ 12 in the initial
separation, below which the two polarons interact until
the stabilization of the lowest energy composite solution
with dp−p ≃ 9. At larger initial separations, the system

(a) (b)

(c) (d)

FIG. 2. Self-trapped polaron for δ ¼ 1. (a) Energies of the
eigenstates λ around the energy gap for the RHF (diamonds) and
UHF (dots) ansatz. The dashed line indicates the chemical
potential of the UHF solution, and green (red) colors are used
for occupied (empty) states. (b)–(d) Real-space quantities in a
region of 16 × 16 unit cells. (b) Density profile. (c) Imaginary NN
hopping Imξi;iþx�y. (d) Local Chern number.
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stabilizes the nonoverlapping solution, with a forbidden
range dp−p ∈ ð12; 25�, showing that metastable solutions
avoid residual overlaps.
Ring-shaped domain walls.—Even at higher particle

doping, we find that the system retains its bulk insulating
character: it is energetically favorable to create several
midgap localized states, as can be seen in Fig. 4(a) for
δ ¼ 8. Taking as a reference the polaron solutions, the
attractive interaction between them leads to a GS whose
inner region is in the other SSB sector [45]. For a
sufficiently large value of δ, this eventually leads to the
formation of a domain wall between two extended half-
filling regions that are in the QAH phase, as can be seen in
Fig. 4(b). Interestingly, the inversion of the TRSB order
parameter across the domain wall leads to the two opposite
values of the local Chern number C ¼ �1 depicted in
Fig. 4(b). Notice here the role of interactions, leading to a
SSB: the coexistence of topologically opposite phases
would not occur if the Chern insulator was induced by a
homogeneous external gauge field, that would define
the global topology sector of the system. Furthermore,
the change of the local Chern number jΔCj ¼ 2 between the
two regions gives rise to topologically protected edge states
with a fixed chirality in the ring. This is exactly what
we observe in the GS currents J xðyÞ ≡ 2JA=BxðyÞImhĉ†iþxðyÞĉii
shown in Figs. 4(c) and 4(d), which are carried by midgap
states. We also verified that the solution with C ¼ −1 in the
inner part of the ring and C ¼ 1 in the outer part has the
same energy and presents edge states with opposite
chirality [45].
Linear domain walls.—For δ ¼ 8, we also find a

metastable self-consistent solution, in which the system
develops two domain walls (see Fig. 5). The extra density is
deposited in these linear structures, as depicted in Fig. 5(b).

As in the previous case, the domain walls separate two
regions with a reversed TRSB order parameter, leading to
two opposite values of the local Chern number, as can be
seen in Fig. 5(c). The main difference, however, is that here
the change in the local Chern number jΔCj ¼ 2 occurs in
each of the two disconnected domain walls, leading to pairs

(a)

(b) (a)

(b)

(c)

FIG. 3. Two polarons for δ ¼ 2. (a),(b) Density profile of the
composite and nonoverlapping solutions. (c) Final distance
between the two polarons, taken as the separation between the
two sites with largest density, as a function of the separation in the
initial ansatz for the UHF values. Blue (orange) circles corre-
spond to composite (nonoverlapping) solutions.

(a) (b)

(c) (d)

FIG. 4. Domain wall for δ ¼ 8. This UHF solution lowers the
RHF energy by ΔEUHF ≃ −0.67t. (a) Single-particle energies in
the gap region. (b) Density profile. Here we indicate the
approximately constant value of C in the inner and outer regions
of the ring. (c),(d) GS currents J x and J y.

(b)

(c)

(a)

(d)

FIG. 5. Linear domain walls for δ ¼ 8. This metastable UHF
solution lowers the RHF energy byΔEUHF ≃ −0.65t. (a) Energies
in the gap region, with two degenerate edge states Ψ1 and Ψ2.
(b) Density profile. (c) Local Chern number. (d) Current J y

flowing in opposite directions at each boundary, and carried by
midgap states such as Ψ1 and Ψ2.
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of degenerate chiral edge states (one at each domain wall)
with opposite chiralities, as shown in Figs. 5(a)–5(d).
Quantum simulation with Rydberg atoms in an optical

lattice.—Cold atoms in optical lattices provide a prime
candidate platform to implement the interacting fermionic
Hamiltonian Ĥ and observe the interaction-induced polar-
ons and topological defects in a highly controllable
experimental setup (for further details, see Ref. [45]):
Laser coupling between different sublattices (cf. Fig. 1),
similar to the approach taken in Ref. [56], allows one
to control hopping dynamics as described by Eq. (1).
Optically trapped and laser-excited Rydberg atoms have
become a versatile platform for quantum simulation of
many-body physics [57–59]. Weak off-resonant laser
dressing of GS atoms with Rydberg states, as demon-
strated, e.g., in Ref. [60] allows one to induce effective
NN and NNN interactions, with associated energy scale
V2 of a similar magnitude as V1 [22,23,61–63], and both
compatible with the kinetic energy scales of Eq. (1).
Detrimental incoherent processes, such as dephasing and
radiative decay from metastable Rydberg states, are small
for suitably chosen laser and atomic parameters [64]
and occur at timescales larger than those associated to
the effective couplings of Hamiltonian (2) governing the
coherent system dynamics. For t ∼ 1 kHz, temperatures
T ≲ 10 nK are below the critical temperature of the QAH
phase and the typical decrease in energy due to the
appearance of spatial structures inside the bulk gap. In
addition, techniques specifically adapted to the detection
of the Chern number, such as time of flight [56,65],
transport [8,66], or interband transition [9,67] measure-
ments or the detection of edge states on the domain walls
through real-space-density imaging [56,68], could be
generalized to resolve the predicted interaction-induced
polarons and topological defects.
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