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The standard definition of genuine multipartite entanglement stems from the need to assess the quantum
control over an ever-growing number of quantum systems. We argue that this notion is easy to hack: in fact,
a source capable of distributing bipartite entanglement can, by itself, generate genuine k-partite entangled
states for any k. We propose an alternative definition for genuine multipartite entanglement, whereby a
quantum state is genuinely network k-entangled if it cannot be produced by applying local trace-preserving
maps over several (k − 1)-partite states distributed among the parties, even with the aid of global shared
randomness. We provide analytic and numerical witnesses of genuine network entanglement, and we
reinterpret many past quantum experiments as demonstrations of this feature.
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The existence of multipartite quantum states that cannot
be prepared locally is at the heart of many communication
protocols in quantum information science, including quan-
tum teleportation [1], dense coding [2], entanglement-
based quantum key distribution [3], and the violation of
Bell inequalities [4,5]. Most importantly, for the last two
decades, the ability to entangle an ever-growing number of
photons or atoms has been regarded as a benchmark for the
experimental quantum control of optical systems [6–9].
Since any multipartite quantum state where two parts

share a singlet can be regarded as “entangled,” another,
more demanding notion of entanglement was required to
assess the progress of quantum technologies. The accepted
answer was genuine multipartite entanglement [10–12].
Genuine multipartite entanglement has since become a
standard for quantum many-body experiments [6–9,13].
But, is it a universal measure?
In this Letter, we argue the opposite and present an

alternative and stronger definition, genuine network multi-
partite entanglement, which we formulate in terms of
quantum networks [14]. First, we define and compare
the two approaches. Next, we present general criteria to
detect genuine network entanglement and discuss the
tightness of the bounds so obtained. Finally, we single
out past experiments in quantum optics that can be
reinterpreted as stronger demonstrations of genuine net-
work entanglement.
Multipartite entanglement.—An n-partite quantum state

can be identified with a bounded Hermitian positive
semidefinite operator ρ acting on a composite Hilbert
space H1 ⊗ � � � ⊗ Hn such that trðρÞ ¼ 1. Each factor
Hi with i ¼ 1;…; n represents the local Hilbert space
of the ith party. For a subset S ⊆ fHigi, we denote by

ρðSÞ ¼ trS̄ðρÞ the density matrix of the reduced state on the
subsystems S, where S̄ is the complement of S. We say that
an n-partite state is fully separable if it can be written as a
convex mixture of product states as follows:

ρ ¼
X

j

wjρ
j
1 ⊗ � � � ⊗ ρjn;

X

j

wj ¼ 1; ð1Þ

where the fρjig are normalized density matrices and the
weights wj are nonnegative. If ρ does not admit a decom-
position of the form of Eq. (1), we say that it is entangled.
The problem with the definition of full separability is that
any technology capable of entangling, say, the first two
particles could claim the generation of “entangled states”
composed of arbitrarily many particles. Indeed, the reader
can check that any state ρ̂ of the form

ρ̂ ¼ jϕþihϕþj ⊗ ρðH3;…;HnÞ; jϕþi ¼ j00i þ j11iffiffiffi
2

p ð2Þ

does not admit a decomposition of the form of Eq. (1).
In order to address this issue, an extended definition of

multipartite separability was proposed [10–12]. Intuitively,
a state is k-partite entangled if, in order to produce it, one
must create k-partite entangled states and distribute them
among the n parties in such a way that no party receives
more than one subsystem. More formally, we say that an
n-partite state is separable with respect to a partition
S1j…jSs of fH1;…;Hng if it can be expressed as

ρ ¼
X

j

wjρ
j
ðS1Þ ⊗ � � � ⊗ ρjðSsÞ: ð3Þ
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An n-partite state is genuinely k-partite entangled (or has
entanglement depth k) if it cannot be expressed as a convex
combination of quantum states, each of which is separable
with respect to at least one partition S1jS2j… of f1;…; ng
with jSlj ≤ k−1, for all l. Using this definition, the state ρ̂
in Eq. (2) is certainly genuinely 2-entangled. However, ρ̂ is
not genuinely 3-entangled so long as its marginal ρ̂ðH3;…;HnÞ
is fully separable.
This notion of multipartite entanglement is easy to

cheat, as we show next. For simplicity, we consider
a tripartite scenario (n ¼ 3) and rename the Hilbert
spaces A, B, and C; we split A into three local
subsystems A0, A00, and A000 and do the same for
B and C. Now, let ρA0B0C0 ¼ jϕþihϕþjA0B0 ⊗ j0ih0jC0 ,
and similarly ρA00B00C00 ¼ jϕþihϕþjB00C00 ⊗ j0ih0jA00 while
ρA000B000C000 ¼ jϕþihϕþjC000A000 ⊗ j0ih0jB000 . Following the same
discussion as for ρ̂, each of these three states individually is
genuinely 2-entangled but not genuinely 3-entangled.
However, if we consider those three states collectively
(i.e., distributed at the same time), then the resulting
state ρABC ¼ ρA0B0C0 ⊗ ρA00B00C00 ⊗ ρA000B000C000 is genuinely
3-entangled when considering the partition AjBjC.
Accordingly, the established definition of genuine k-partite
entanglement is unstable under parallel composition (i.e.,
under simultaneous distribution of states).
In fact, enough copies of the state ρABC enable the

distribution of any tripartite state using the standard
quantum teleportation protocol [1]. Any definition of
genuine tripartite entanglement that regarded states like
ρABC as not genuinely tripartite entangled and, at the same
time, were stable under composition and local operations
and classical communication (LOCC) would thus be
necessarily void.
In this Letter, we introduce the concept of genuine

network k-entanglement, an alternative operational defini-
tion of multipartite entanglement that is stable under
composition and where ρABC is not genuinely tripartite
entangled. The drawback, as will be evident from the
definition, is that nongenuine network entanglement is not
closed under LOCC but under the subset of LOCC trans-
formations known as local operations and shared random-
ness (LOSR) [15,16]. This set of operations has been
argued to be more relevant than LOCC for the study of Bell
nonlocality [17,18]. Note that LOSR is a natural set of
operations when the different parties in a network are
separated in space and do not hold a quantum memory.
Genuine network entanglement.—We explain our defi-

nition using an adversarial approach. Eve is a vendor
selling a source of tripartite quantum states to three honest
scientists: Alice, Bob, and Charlie. Eve pretends that her
device produces a valuable entangled tripartite state ρABC.
Unbeknown to the scientists, the source sold to them is
actually composed of cheaper components: quantum
sources that produce the bipartite entangled states
σA0B00 ; σC0A00 ; σB0C00 (see Fig. 1). Alice receives the A0;A00

subsystems of the states σA0B00 ; σC0A00 . Those can in principle
interact within Alice’s experimental setup, giving rise to a
new quantum system A, which is what Alice eventually
probes. Similarly, Bob (Charlie) will have access to system
B (C), whose state is the result of a deterministic interaction
between systems B0;B00 (C0; C00). In addition, we provide
Eve with unlimited shared randomness Λ to jointly influ-
ence the local operations acting on systems A0A00, B0B00,
and C0C00. It is worth noting that we do not make any
assumption on the dimensionality of the “hidden” states
σA0B00 ; σC0A00 ; σB0C00 . Even if the systemsA, B, C accessible to
Alice, Bob, and Charlie are a qubit each, the Hilbert space
dimension of the hidden systems might well be infinite.
By performing local tomography on the state ρABC , can

Alice, Bob, and Charlie certify that the state produced by
Eve’s network is indeed a valuable tripartite quantum state?
The family of states that they try to rule out can be

defined formally. Let Λ be a classical random variable with
distribution PΛðλÞ sent to the three labs (for example,
through radio broadcast). Denoting by BðHÞ the set of
bounded operators on the Hilbert space H, we describe the
deterministic operation at Alice’s by a family of linear maps
fΩλ

Agλ, where each Ωλ
A has type

Ωλ
A∶BðA0 ⊗ A00Þ → BðAÞ

and each Ωλ
A is completely positive and trace preserving.

For completeness, the other maps correspond to
Ωλ

B∶BðB0 ⊗ B00Þ → BðBÞ and Ωλ
C∶BðC0 ⊗ C00Þ → BðCÞ,

so that the state ρABC is

ρABC ¼
X

PΛðλÞ½Ωλ
A ⊗ Ωλ

B ⊗ Ωλ
C�ðσÞ; ð4Þ

where σ ¼ σA0B00 ⊗ σB0C00 ⊗ σC0A00 .
The valuable states, those genuinely network

3-entangled, are those that cannot be written the way
described by Eq. (4). It is easy to see that the set of states
of the form of Eq. (4) is closed under tensor products and
LOSR transformations. That is, the set of network
2-entangled states is a self-contained class within the

FIG. 1. Network producing a nongenuine network 3-entangled
state; quantum resources and spaces are denoted using dotted
lines, while classical variables are drawn using solid lines.
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resource theory of LOSR entanglement [15,16]. This
property has obvious implications for the monotonicity
of any network 3-entanglement measure. Think for instance
of the robustness of entanglement [19]. We could define its
network 3-entanglement generalization as the minimum
amount of network 2-entangled noise RðρABCÞ that one
must add to a tripartite quantum state ρABC to make it
network 2-entangled. Closure under LOSR implies that
RðρABCÞ is monotonically decreasing under LOSR oper-
ations. From our motivating discussion, though, it follows
that RðρABCÞ can be arbitrarily increased by means of
LOCC protocols.
Note that, in the considered adversarial scenario, rather

than the state σA0B00 ⊗ σC0A00 ⊗ σB0C00 , Eve could also
distribute to Alice, Bob, and Charlie arbitrary convex
combinations of states of the form σðiÞA0B00 ⊗ σðiÞC0A00 ⊗ σðiÞB0C00
for some values of i. Since the dimensionality of the primed
spaces is unbounded, though, this strategy can be simulated
with the operations allowed by Eq. (4). Indeed, it suffices to
distribute the tensor product of the states σðiÞA0B00 ⊗ σðiÞC0A00 ⊗
σðiÞB0C00 and embed the index i within the hidden variable Λ
(whose dimension is also unbounded). The index i would
then signal in which pair of Hilbert spaces at party Z’s the
map Ωλ

Z is to be applied.
The definition of genuine network entanglement can be

straightforwardly extended to the n-partite case.
Definition.—A multipartite quantum state is genuinely

network k-entangled if it cannot be generated by distrib-
uting entangled states among subsets of maximum k−1
parties, and letting the parties apply local trace-preserving
maps, those maps being possibly correlated through global
shared randomness.
Witnesses of genuine network entanglement.—The

certification of ρABC being genuinely network 3-entangled
is complicated, as the dimensions of the Hilbert spaces
A0;…; C00 are in principle unbounded. To classify the
degree of a state’s network multipartiteness, we must
somehow determine if the state can come about from a
particular quantum causal process. The study of quantum
causal processes has experienced great progress [14,20–
23], and many techniques have recently been developed
[22,24,25]. Herein, we adapt the inflation technique for
causal inference [22,26] in order derive witnesses for
genuine network entanglement.
As a starter, we consider a three qudit state ρABC and

quantify its proximity to the Greenberger–Horne–Zeilinger
(GHZ) state [27] via the fidelity

FGHZd
≡ hGHZdjρABCjGHZdi; ð5Þ

where jGHZdi ¼
P

d
i¼1ðjiiii=

ffiffiffi
d

p Þ.
If ρABC is of the form of Eq. (4), then there exists a

random variable Λ, quantum states σA0B00 , σB0C00 , and σC0A00

and families of completely positive and trace-preserving
(CPTP) maps fΩλ

Agλ, fΩλ
Bgλ, and fΩλ

Cgλ that generate

ρABC. To derive bounds on the maximum fidelity achiev-
able by network 2-entangled states, we next imagine what
states one could prepare by combining multiple realizations
of the above state and channel resources. As we will see,
some of the reduced density matrices of the resulting many-
body inflated states are fully determined by the original
tripartite state ρABC. The property of ρABC admitting a
decomposition of the form of Eq. (4) will then be relaxed to
that of admitting positive semidefinite inflated states
satisfying said linear constraints. In the language of [26],
we will be defining a nonfanout inflation of the causal
scenario depicted in Fig. 1.
In this regard, consider the ring inflation scenario

depicted in Fig. 2. If one acts on two copies of the states
σA0B00 , σB0C00 , and σC0A00 with the maps fΩλ

Agλ, fΩλ
Bgλ, andfΩλ

Cgλ in the ways indicated in the figure, one obtains the
six-partite density matrices τA1B1C1A2B2C2 and γA3B3C3A4B4C4 .
Those are essentially unknown to us, as we do not know
how Eve’s devices act when they are wired differently.
However, the states τ and γ are subject to several

consistency constraints. To begin with, τ is symmetric
under the exchange of systems A1B1C1 by systems
A2B2C2, and so is γ under the exchange of A3B3C3 by
A4B4C4. In addition, we observe that

τðA1B1C1Þ ¼ τðA2B2C2Þ ¼ ρABC: ð6Þ

Still, we cannot say that τA1B1C1A2B2C2 ¼ ρABC ⊗ ρABC as
the production of the two triangles could be classically
correlated through the shared randomness Λ. However, the

FIG. 2. Ring inflation of the triangle scenario in Fig. 1
containing copies of the state processing devices Ωλ

A;B;C; we
label such copies according to their output Hilbert space Ai, Bj,
Ck, where i, j, k is the index of the copy. These devices process
copies of the quantum resources σA0B00 , σB0C00 , and σC0A00 . To
simplify the drawing, we omitted the indices of these copies and
only indicate their original type. Note that, despite the fact that the
wirings between states and CPTP maps are different than in the
original scenario, every copy of a CPTP map acts on copies of the
states determined by the original scenario.
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state τ is separable across the A1B1C1=A2B2C2 partition.
Both γ and τ are related to each other through the
constraints

γðA3B3A4B4Þ ¼ τðA1B1A2B2Þ ð7Þ

and γðB3C3B4C4Þ ¼ τðB1C1B2C2Þ and γðC3A4C4A3Þ ¼ τðC1A1C2A2Þ.
Furthermore, τ and γ have trace one and are semidefinite
positive. Finally, the reduced state γðA3B3C3B4Þ is separable
across the A3B3C3=B4 partition, and additional constraints
of that type follow from cyclic symmetry.
Let us now provide some intuition as to why any state

ρABC admitting such extensions τ, γ cannot be arbitrarily
close to the GHZ state. Suppose, indeed, that FGHZd

¼ 1,
i.e., ρABC ¼ jGHZdihGHZdj and that there exist extensions
γ, τ satisfying the constraints above. A measurement in the
computational basis of the sites A3, B3, C3 of γ
will generate the random variables a3, b3, c3. Since
γðA3B3Þ ¼ ρðABÞ ¼ ð1=dÞPd

i¼1 ji; iihi; ij, it must be the case
that a3, b3 are perfectly correlated. The same consider-
ations hold for b3 and c3. Since a3, b3, and b3, c3 are
pairwise perfectly correlated, so are a3, c3. Now, from the
condition γðC3A4C4A3Þ ¼ τðC2A2C1A1Þ, we have that the
distribution of c3 and a3 must be the same as that of c2
and a1. Hence, c2 and a1 must be perfectly correlated.
However, τðA1B1C1Þ is a pure state, since τðA1B1C1Þ ¼ ρABC ¼
jGHZdihGHZdj, and hence it must be in a product state
with respect to any other system, such as C2. It follows that
a measurement in the computational basis of the sites A1

and C2 will produce two uncorrelated random variables a1,
c2. We thus reach a contradiction.
The previous argument just invalidates the case

FGHZd
¼ 1. A more elaborate argument (see the

Supplemental Material [28] for a proof) shows that if a,
b, c are the random variables resulting from measuring
ρABC locally, then any network 2-entangled state ρABC must
satisfy

Hða∶bÞþHðb∶cÞ−HðbÞ≤SðρðAÞÞþSðρABCÞ−SðρðBCÞÞ:
ð8Þ

Here HðxÞ, Hðx∶yÞ, and SðρÞ, respectively, denote the
Shannon entropy of variable x, the mutual information
between the random variables x, y, and the von Neumann
entropy of state ρ. The condition stated in Eq. (8) is clearly
violated if ρABC ≈ jGHZdihGHZdj and the measurements
are carried in the computational basis.
Another constraint satisfied by states satisfying Eq. (4),

expressed in terms of the GHZ fidelity, is

FGHZd
≤
2dð3dþ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2d − 1
p Þ

1 − 2dþ 9d2
: ð9Þ

Remarkably, in order to derive Eqs. (8) and (9), it is not
necessary to invoke the existence of the six-partite states τ,

γ, but that of their reduced density matrices τðA1B1C1C2Þ,
γðA3B3C3Þ. As shown in the Supplemental Material [28], both
expressions, Eqs. (8) and (9), can be generalized to detect
genuine network k-entanglement.
For d ¼ 2, Eq. (9) establishes that any tripartite state

with FGHZ2
> 4

33
ð6þ ffiffiffi

3
p Þ ≈ 0.9372 is genuinely network

3-entangled. As it turns out, this inequality is not tight: it
can be improved to FGHZ2

> 1þ ffiffi
3

p
4

≈ 0.6803 by means of
semidefinite programming applied to the ring inflation.
The variables in the corresponding program are trace-

one positive semidefinite matrices τA1B1C1A2B2C2 and
γA3B3C3A4B4C4 of size 64 × 64, subject to linear constraints
of the form of Eqs. (6) and (7), as well as to the
permutational symmetry 1 ↔ 2, 3 ↔ 4. For all states
μXY separable across a X=Y partition, we add a positivity
under partial transposition constraint ðμXYÞ⊤Y ≽

PSD
0 [29].

This applies to τ across the A1B1C1=A2B2C2 partition, and
to reduced states of γ for the partitions A3B3C3=B4,
B3C3A4=C4, C3A4B4=A3.

The bound FGHZ2
> 1þ ffiffi

3
p
4

is obtained by maximizing
hGHZ2jρABCjGHZ2i subject to the constraints above—a
typical instance of a semidefinite program—using the
optimization toolbox CVX [30] and the solver MOSEK [31].
We also employed the semidefinite optimization

procedure using as reference the W state [32],
jWi≡ j001iþj010iþj100iffiffi

3
p , concluding that any 3-qubit state

ρABC with hWjρABCjWi > 0.7602 is genuinely network
3-entangled.
Armed with these witnesses, we find that several past

experiments in quantum optics can be interpreted as
demonstrations of genuine network tripartite entanglement
[33–36]. Indeed, in all those experiments, the fidelity of the
prepared states with respect to GHZ or W states is greater
than the bounds derived above for network bipartite states.
The prepared states are thus certified to contain genuine
network tripartite entanglement.
Robustness to detection inefficiency.—In many experi-

mental setups, the carriers transmitting the quantum infor-
mation are often unobserved due to low detector efficien-
cies. The standard prescription in such a predicament
consists in discarding the experimental data gathered when
not all detectors click. Coming back to our adversarial
setup, this postselection of measurement results opens a
loophole that Eve can in principle exploit to fool Alice,
Bob, and Charlie. It is possible to contemplate this
contingency in the calculations above and thus bound
the detection efficiency needed for certifying genuine
network entanglement under postselection.
Let p indicate the fraction of experimental data pre-

served by postselection, i.e., the probability that all three
detectors click. If ρpABC is the state reconstructed after
postselection, then all that can be said about the true
tripartite quantum state ρABC before the postselection took
place is that
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ρ − p × ρpABC≽0: ð10Þ

As before, linear optimizations over the set of postselected
states ρpABC can be conducted via semidefinite program-
ming. In such instances, one continues to relate the inflated
states τ and γ to the true (albeit unknown) tripartite state
ρABC, and Eq. (10) is merely added as an extra constraint.
We find critical postselection probabilities beyond which
one can still certify genuine network tripartite entanglement
via GHZ fidelity (pc ≈ 0.685) or W fidelity (pc ≈ 0.765).
Conclusions.—In this Letter, we have argued that the

standard definition of genuine multipartite entanglement is
not appropriate to assess the quantum control over an ever-
growing number of quantum systems. We proposed an
alternative definition, genuine network multipartite entan-
glement, that captures the potential of a source to distribute
entanglement over a number of spatially separated parties.
We provided analytic and numerical tools to detect genuine
network tripartite entanglement and also indicated how the
definition can be adapted to situations where there may be
local postselections on each party’s lab. Furthermore,
the construction can be adapted to detect genuine network
n-partite entanglement for any n.
While quite general, our numerical methods to detect

genuine network entanglement demand considerable
memory resources to the point that we were not able to
derive new entanglement witnesses for tripartite qutrit
states in a normal computer. In addition, there exist
significant gaps between the bounds we derived on GHZ
and W state fidelities via semidefinite programming relax-
ations and the lower bounds obtained using standard
variational techniques [37,38]. Using such algorithms,
we were not able to give lower bounds to the GHZ and
W fidelities larger than 0.5170 and 2=3, respectively. A
topic for future research is thus to develop better techniques
for the characterization of genuine network multipartite
entanglement.
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Note added.—After completing this manuscript, we
became aware of the work of [39,40], whose authors
consider a scenario very similar to that depicted in
Fig. 1. Crucially, they restrict the maps Ωλ

A;B;C to be unitary
transformations, acting on convex combinations of bipartite
states. The restriction to unitary maps not only allows
upper-bounding the dimensionality of the source states
σA0B00 ; σC0A00 ; σB0C00 , but it also severely constrains the result-
ing set of states ΔC. As shown in [39], tripartite qubit states
in ΔC cannot be genuinely tripartite entangled. This
contrasts with the GHZ fidelity greater than 1=2 reported
above, achievable by states of the form of Eq. (4).

*Also at ICFO-Institut de Ciencies Fotoniques, The
Barcelona Institute of Science and Technology, 08860
Castelldefels (Barcelona), Spain.

[1] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres,
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