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Many-body localization (MBL) provides a mechanism to avoid thermalization in many-body quantum
systems. Here, we show that an emergent symmetry can protect a state fromMBL. Specifically, we propose
a Z2 symmetric model with nonlocal interactions, which has an analytically known, SU(2) invariant,
critical ground state. At large disorder strength, all states at finite energy density are in a glassy MBL phase,
while the lowest energy states are not. These do, however, localize when a perturbation destroys the
emergent SU(2) symmetry. The model also provides an example of MBL in the presence of nonlocal,
disordered interactions that are more structured than a power law. Finally, we show how the protected state
can be moved into the bulk of the spectrum.
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The eigenstate thermalization hypothesis suggests
that clean quantum systems typically thermalize [1,2].
Alternatively, disorder may prevent thermalization and
instead give rise to many-body localization (MBL) [3].
This opens the door for generating interesting phases, in
which, e.g., excited states exhibit entanglement properties
similar to ground states [4,5]. Examples of MBL have been
found numerically in simple spin models [4] and studied in
experiment [6], and many aspects of MBL are currently
under investigation.
One area of intense interest is the interplay between

symmetry and MBL. For instance, while it is known that
MBL can be present in systems where the Hamiltonian has
Z2 symmetry [7], it has been argued that Hamiltonians
with SU(2) symmetry cannot support a MBL phase,
because the eigenstates of such Hamiltonians do not have
area law entanglement [8–10]. Also, it was noted that
symmetry-constrained dynamics can yield a many-body
mobility edge [11].
Another area of intense interest is the presence or

absence of MBL in models with nonlocal interactions.
Recent studies, which have focused on power law inter-
actions and/or hopping in a random potential or random
magnetic field, suggest that MBL can occur in long-range
models [12–15]. MBL has also been studied in models with
power law interactions with random strengths or signs
combined with a random magnetic field [16,17].

Here, we introduce a new type of model which exhibits
MBL with a number of novel properties. The main idea is
to use emergent symmetry of a single state in the spectrum
to protect it from MBL, while not preventing the rest of the
spectrum from localizing. Specifically, we investigate a
Hamiltonian which has only a Z2 symmetry, but never-
theless has a critical ground state with SU(2) symmetry. We
introduce disorder into this model, and we show that all
states at finite energy density form a glassy phase [5,7,18]
at an appropriate disorder strength, while the ground state
remains critical.
The model exhibits several interesting features. First,

it shows that an emergent symmetry can have interesting
and nontrivial effects with respect to MBL. Specifically,
for a wide range of disorder strengths all the states at
finite energy density form a MBL glass, while a few
states at the bottom of the spectrum do not. Crucially,
these states also become glassy as the emergent SU(2)
symmetry vanishes upon perturbing the Hamiltonian.
Second, it gives an example of MBL in a system with
nonlocal, disordered interactions that have more struc-
ture than a power law. Third, the ground state can be
found analytically, which allows for a detailed study of
its properties even for large system sizes. Fourth, the
model shows as yet unexplained gaps in the disorder
averaged energy spectrum.
Model.—We study a system of N spin-1=2 particles and

express the Hamiltonian

H ¼
X
i≠j

FA
ijðSxi Sxj þ Syi S

y
jÞ þ

X
i≠j

FB
ijS

z
iS

z
j þ FC ð1Þ

in terms of the spin operators Sai ¼ σai =2, a ∈ fx; y; zg,
where σai are the Pauli matrices acting on the ith spin. The
coupling strengths,
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FA
ij ¼ −2w2

ij; wjk ¼ −i= tan½ðϕj − ϕkÞ=2�;

FB
ij ¼ −2w2

ij þ 2wij

�X
kð≠iÞ

wik −
X
kð≠jÞ

wjk

�
;

FC ¼ NðN − 2Þ
2

−
1

2

X
i≠j

w2
ij; ð2Þ

depend on N phases ϕ1;ϕ2;…;ϕN . We introduce disorder
into the model by choosing

ϕfðjÞ ¼ 2πðjþ αjÞ=N; j ¼ 1; 2;…; N; ð3Þ

where αj is a random number chosen with constant
probability density in the interval ½−ðδ=2Þ; ðδ=2Þ� and δ ∈
½0; N� is the disorder strength. We choose the indices fðjÞ ∈
f1; 2;…; Ng such that the angles are always numbered in
ascending order when going around the unit circle. For the
clean case, δ ¼ 0, the angles are uniformly distributed on
the circle, and for maximal disorder, δ ¼ N, all the angles
may be anywhere on the circle. For δ ≥ 1, adjacent angles
can be arbitrarily close.
The Hamiltonian (1) is fully connected, meaning

that every spin interacts with every other spin. If we
interpret a spin-up as a particle and a spin-down as an
empty site, the first term in the Hamiltonian is a hopping
term. The coefficient FA

ij decreases rapidly with increasing
jϕi − ϕjj, and when jϕi − ϕjj is small, FA

ij ≈ 8=ðϕi − ϕjÞ2.
The coefficient FB

ij of the two-body interaction term has a
more complicated behavior. The maximum interaction
strength for spin i does not need to be with one of the spins
i� 1 modulus N, and Fig. 1(a) shows the probability that
spin i interacts most strongly with one of the spins i�m
modulusN. In the rest of this Letter, we restrict ourselves to
the zero magnetization sector

P
i S

z
i ¼ 0.

In the zero magnetization sector, H can be rewritten into
H ¼ −2

P
k Λ

†
kS

z
kΛk, where Λk ¼

P
jð≠kÞ wkj½Sxj − iSyj −

2ðSxk − iSykÞSzj� is an operator that annihilates the state

jψ0i ∝
X

s1;…;sN

δs
Y
i<j

fsin½ðϕi − ϕjÞ=2�gðsisj−1Þ=2

×
Y
k

eiπðk−1Þðskþ1Þ=2js1;…; sNi ð4Þ

(see Ref. [19] and the Supplemental Material [20] for
details). jψ0i is hence an exact zero energy eigenstate of
Eq. (1). Here, si ¼ �1 is twice the z component of the ith
spin and δs ¼ 1 for

P
n sn ¼ 0 and δs ¼ 0 otherwise. We

find numerically for finite N that Eq. (4) is the non-
degenerate ground state in the zero magnetization sector.
The state (4) is a spin singlet [24], and for δ ¼ 0 it

coincides with the ground state of the Haldane-Shastry
model [25,26]. We shall hence refer to the state with δ ≠ 0
as the disordered Haldane-Shastry state. The Haldane-

Shastry Hamiltonian has SU(2) symmetry, but the
Hamiltonian (1) does not. Instead, in the zero magnetiza-
tion sector, it has only a global Z2 spin flip symmetry
generated by

Q
N
i¼1 σ

x
i .

MBL and glassiness.—We show that the highly excited
states form a MBL spin glass for δ≳ 1. We first investigate
the entanglement entropy S ¼ −Tr½ρ lnðρÞ� averaged over
disorder realizations for states in the middle of the spectrum
[7], where ρ is the reduced density operator for spins 1 to
N=2. The mean entanglement entropy and the variance of
the distribution as a function of the disorder parameter δ
[see Figs. 1(c) and 1(d)] show a phase transition at δ ≈ 1
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FIG. 1. (a) Probability that spin i interacts most strongly with
one of the spins i�mmodulus N for different disorder strengths.
(b) The adjacent gap ratio [averaged over 104 disorder realiza-
tions (103 for N ¼ 16) and shown as a function of system size] is
close to the Gaussian orthogonal ensemble (GOE) for weak
disorder and close to the Poisson distribution, indicating MBL,
for strong disorder. (c) The transition to the MBL phase is also
seen in the entanglement entropy S of half of the chain for the
state closest to the middle of the spectrum averaged over 105

disorder realizations as a function of the disorder strength δ for
different system sizes N. The blue dashed lines indicate the
thermal value ½N lnð2Þ − 1�=2 of the entropy. The inset shows that
the mean entropy follows a volume law for weak disorder and an
area law for strong disorder. (d) The variance σ2 of the
entanglement entropy computed from the same set of data shows
a peak at the transition point.

PHYSICAL REVIEW LETTERS 125, 240401 (2020)

240401-2



(which is also seen at other energy densities [20]). On the
left-hand side of the transition, the mean entanglement
entropy scales with the system sizeN and is bounded by the
thermodynamic entropy, while on the right-hand side of
the transition it displays area law behavior indicating MBL
[see the inset in Fig. 1(c)].
The level spacing statistics is another diagnostic of MBL.

We see that the energy spectrum at strong disorder (δ ¼ N)
has pairs of eigenvalues that are almost degenerate and have
opposite parity with respect to the global Z2 symmetry of
the Hamiltonian. We hence compute the adjacent gap ratio
[27] for different system sizes by restricting ourselves to
one of the Z2 sectors. Figure 1(b) shows that the disorder
averaged gap ratio r converges toward the Poisson dis-
tribution (r ≈ 0.386) for strong disorder and toward the
Gaussian orthogonal ensemble (r ≈ 0.53) for weak disor-
der. This confirms that the system is indeed MBL for strong
disorder.
The fact that pairs of almost degenerate states with

opposite parity appear in the spectrum suggests that there is
spin glass order in the excited states [7,18]. In an eigenstate
jψni this can be identified by the divergence of an Edwards-
Anderson order parameter [7,28]:

χSG ¼ 1

N

XN
i≠j

hψnjσziσzjjψni2: ð5Þ

For eigenstates in the middle of the spectrum, we find [see
Fig. 2(a)] that there is glassiness for strong disorder (hχSGi
increases with system size), but not for weak disorder
(hχSGi approaches zero with increasing system size). We
perform a finite size scaling analysis to get an estimate of
the critical disorder strength. The scaling parameters are
given in Fig. 2(b), where we define the scaling function as
xL ¼ ðδ − δcÞN1=ν and yL ¼ hχSGi=Na. Glassiness sets in
at around the same disorder strength (δc ≈ 1) as MBL. A
similar behavior is also seen at other energy densities [20].
Ground state.—The low energy physics of the Haldane-

Shastry model is described by Luttinger liquid theory. For
strong disorder, we show that various properties of the
ground state remain the same rather than reflecting a phase
transition to, e.g., a random singlet phase or a glassy phase.
The disordered Haldane-Shastry state has been studied

previously for weak disorder [24,29]. In Ref. [24], the
Renyi entropy was investigated. For critical systems it is
known that the Renyi entropy of order 2 shows a universal
behavior given by [30–32]

S2L ¼ C ln ½sinðπL=NÞ� þ α; ð6Þ

where the subsystem consists of spins 1 to L, and C is a
universal constant that takes the value 1=4 for the Luttinger
liquid and lnð2Þ=3 for the random singlet phase [33–35].
Monte Carlo simulations for δ ¼ 0.1, δ ¼ 0.5, and δ ¼
0.75 in Ref. [24] showed that C might be closer to lnð2Þ=3

than to 1=4 for δ ¼ 0.5 and δ ¼ 0.75. We have redone the
computation for δ ¼ 0.75 in Fig. 3, and the results suggest
that C might rather go to 1=4 for large system sizes. The
differences between Ref. [24] and our results could be due
to the fact that only L values close to N=2were used for the
fitting in Ref. [24]. The main conclusion from the compu-
tations, however, is that the uncertainty in determining C
due to, e.g., finite size effects and ambiguity in the fitting
procedure is not small compared to the difference between
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FIG. 2. (a) Disorder averaged spin glass order parameter hχSGi
for a state in the middle of the spectrum (E=Emax ¼ 0.5, circles), a
low energy state (E=Emax ¼ 0.01, triangles), and the ground state
(E ¼ 0, dashed line) as a function of the disorder strength δ. The
excited states show glassiness for strong disorder, and the ground
state is not glassy. (b) A finite size scaling collapse for the state in
the middle of the spectrum. The inset shows the scaling collapse
for the low energy state. For both cases, the predicted phase
transition point is δc ≈ 1.05. (c) hχSGi for all eigenstates for a
system with 12 spins and weak (δ ¼ 0.1) or strong (δ ¼ 12)
disorder. The states close to the ground state have different values
of hχSGi compared to the states in the middle of the spectrum. The
inset shows that the disorder averaged energy spectrum (nor-
malized) at δ ¼ 12 has gaps, and these coincide with the jumps in
hχSGi. (d) When we destroy the emergent SU(2) symmetry by
perturbing the Hamiltonian (we modify FA

ij to −1.9w2
ij), the

ground state becomes glassy for δ≳ 1. In all cases, the number of
disorder realizations is 104.
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1=4 and lnð2Þ=3. The conclusions may not be reliable, and
one should also consider other diagnostics.
In Ref. [29], the second cumulant,

C2ðN=2Þ ¼ hM2i − hMi2; M ≡XN=2

i¼1

Szi ; ð7Þ

of the total magnetization M of half of the system was
observed to show a Luttinger liquid behavior at δ ¼ 1.
Specifically, the second cumulant is known to diverge
logarithmically with system size, C2ðN=2Þ ∼ ξ lnðN=2Þ þ
const for large N, with different coefficients for the
Luttinger liquid [ξ ¼ 1=ð2π2Þ] and for the random singlet
phase (ξ ¼ 1=12), and it was shown that ½C2ðNÞ −
C2ðN=2Þ�= lnð2Þ ≈ ξ approaches the value for the
Luttinger liquid for large system sizes. Figure 3 shows
that the same is true for δ ¼ 4. This shows that the ground
state retains its Luttinger liquid behavior also for a
disorder strength for which the highly excited states are
MBL. Note that relatively large system sizes can be
reached in these computations because the two point
correlations can be obtained by solving a set of linear
equations derived in Ref. [21].

The ground state stands out in the plot of the spin glass
order parameter in Fig. 2(a) with no indication of a phase
transition. In fact, we find that χSG ¼ 1 for all disorder
realizations and system sizes. We show this analytically
for N ¼ 2, 4, 6 and numerically for higher N in the
Supplemental Material [20].
Low-lying excited states.—The observation that the

highly excited states undergo a transition to MBL, while
the ground state does not undergo a transition, naturally
raises the question, whether it is only the ground state that is
special, or the ground state properties are to some extent
inherited to the low-lying excitations. By studying the spin
glass order parameter, we find that a small number of low-
lying excitations behave differently, but as soon as we
consider a finite energy density, the states appear to show
glassiness for strong disorder.
In Fig. 2(a), we show data for hχSGi for the case where we

choose the state in the spectrum that is closest to E=Emax ¼
0.01 in every disorder realization. Even for this low value
of the energy density, glassiness is still observed for strong
disorder. A more detailed view for 12 spins is given in
Fig. 2(c), where we plot hχSGi for all states in the spectrum
for weak and strong disorder. For all the highly excited
states, there is a large increase in hχSGi when going from
weak to strong disorder, which shows the transition into the
glassy phase. For the ground state, there is no change as
χSG ¼ 1. A few states close to the ground state show an
intermediate behavior and have particularly low values of
hχSGi for strong disorder. The inset shows the disorder
averaged spectrum, and we note that the sudden jumps
observed in hχSGi coincide with gaps in the spectrum.
Symmetry.—Finally, we show that the special behavior

of the ground state disappears together with the emergent
SU(2) symmetry. To do so, we slightly modify the hopping
strengths FA

ij to −1.9w2
ij. This preserves the Z2 symmetry

of the Hamiltonian, but not the emergent SU(2) symmetry
of the ground state. Figure 2(d) shows that the ground state
is now glassy for strong disorder. If instead we add a small
amount of the Haldane-Shastry Hamiltonian, the ground
state is unaltered, and the Z2 symmetry of the Hamiltonian
is preserved. In this case, the spin glass order parameter
behaves similarly to the results in Fig. 2(a).
Conclusions.—We have constructed a new type of MBL

model, in which an emergent symmetry protects the ground
state from MBL. While states at a finite energy density
showMBL for sufficiently strong disorder, the ground state
remains critical. It seems likely that the observed behavior
is a general mechanism to protect states from MBL, and it
would thus be interesting to search for other instances of
such behavior, ideally of course in models that are suited
for experimental implementations. With respect to the
latter, we note that one ingredient, MBL, has already been
observed experimentally [6], while the other, an approxi-
mate emergent SU(2) symmetry, may play a role [36] in the
context of recent scar experiments [37].
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FIG. 3. (a) The Renyi entropy of the ground state (plotted for
N ¼ 600 and δ ¼ 0.75 in the inset) follows the logarithmic
relation (6). The main plot shows the coefficient C as a function
of the system size for δ ¼ 0.75. The results might suggest a
Luttinger liquid, but the method is not accurate enough to make
clear conclusions. We use 103 disorder realizations, and the error
from the Monte Carlo simulations and disorder averaging is of
order 10−4. (b) The coefficient ξ in the second cumulant C2

computed for different systems divided into two halves is close to
the value for the Luttinger liquid both for the clean (δ ¼ 0) and
the disordered (δ ¼ 4) Haldane-Shastry state. Each data point is
averaged over 105 disorder realizations. The inset shows the
logarithmic scaling of the averaged Renyi entropy for δ ¼ 4
and N ¼ 50. RSP stands for random singlet phase.
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The model has the unexpected property that the disorder
averaged energy spectrum has gaps. The background for
this is not understood and would be interesting to inves-
tigate further.
While we do find glassiness to be present in all excited

states already at very low energy densities, we find a
different behavior for the states adjacent to the ground state.
The possibility of a “critical regime" with a diverging
localization length warrants further study here.
In the considered model, the delocalized state is the

ground state. One can, however, embed the state in the bulk
of the localized spectrum by instead considering the
Hamiltonian H̃ ¼ ðH − βÞ2, where β ∈ �0; Emax=2½. If the
delocalized state should turn out to be genuinely isolated in
a sea of localized ones, one could compare this behavior to
the celebrated many-body scars [38]. In the former case, a
state with above-area-law entanglement is embedded in a
sea of area law entangled states, while in the latter, one or
several nonergodic states are embedded in a sea of ergodic
states.
At any rate, it would be interesting to consider the

scope of constructing models with multiple states in the
spectrum—including at finite energy density—being
protected from localization by an emergent symmetry.
More generally, search and study of ergodic states embedded
in a sea of nonergodic states, what one might call “inverted
many-body scars,” is clearly interesting in its own right.
Another interesting direction for further investigations is

to study the transport properties of our model, in particular
in a regime where the ground state and some of the lower
lying excited states are populated.
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