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We combine the anisotropy of magnetic interactions and the point symmetry of finite solids in the study
of dipolar clusters as new basic units for multiferroics metamaterials. The Hamiltonian of magnetic dipoles
with an easy axis at the vertices of polygons and polyhedra, maps exactly into a Hamiltonian with
symmetric and antisymmetric exchange couplings. The last one gives rise to a Dzyaloshinskii-Moriya
contribution responsible for the magnetic modes of the systems and their symmetry groups, which coincide
with those of a particle in a crystal field with spin-orbit interaction. We find that the clusters carry spin
current and that they manifest the magnetoelectric effect. We expect our results to pave the way for the
rational design of magnetoelectric devices at room temperature.
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Introduction.—The conciliation of crystal symmetry and
magnetic phenomena has been a key element in the
understanding of matter and the quest for new materials.
Magnetic degrees of freedom coupled to physical sym-
metry preclude the realization of magnetic phases, that may
manifest as ferromagnetic, ferrimagnetic, and supercon-
ductor materials among others [1–3]. The magnetic struc-
tures, correlated in their own right, respond to external
fields through a variety of fashions [4] that may arise
piezomagnetism, pyromagnetism, and magnetolectricity.
The magnetoelectric (ME) effect is especially intriguing
[5,6] because the magnetic field (H) controls the electric
polarization (P) and the electric field (E) controls the
magnetization (M), through magnetic modes that break
both space-inversion (I) and time-reversal (T ) symmetries
[7–9].
The ME effect was first observed in antiferromagnetic

chromium oxide, Cr2O3 [10,11]. As for Cr2O3 and other
ME materials, an applied magnetic field induces not only
magnetization, but also electric polarization [12]. In the
linear ME effect, the induced M, an axial first rank tensor,
is linearly proportional to the applied E, a polar first rank
tensor, through the ME coefficients which are matrix
elements of the ME axial tensor Q [13]. The form of Q
is determined by the transformation of spins on a given
lattice under the symmetry operations of the respective
crystallographic space group. To date, several magnetic
materials have been reported to realize ferroelectricity
induced either by spiral magnetic orders or by other
modulated or chiral spin arrangements like conical or
screw spin structures that break inversion symmetry
[8,14]. Examples include orthorhombic perovskite man-
ganites, hexagonal hexaferrites, and cuprates to name
a few [15,16]. Nevertheless, in most, the ME effect is
hard to detect as it is hidden by magnetic disorder or
other competing phenomena, it manifests at very low

temperatures or it is too weak becoming negligible in
the view of stronger effects [17–19].
Main results.—In this Letter, we find new simple

systems and mechanisms that may realize the ME effect
at room temperature through magnetic modes induced by
the interplay of dipolar interactions and geometrical con-
straints. More precisely, we study the ME effect in dipolar
systems realized by regular polygons and polyhedra dec-
orated with easy axis magnetic dipoles at their vertices. The
dipolar Hamiltonian is mapped exactly into a symmetric
and antisymmetric contribution, where the antisymmetric
part takes the form of a Dzyaloshinskii-Moriya (DM)
interaction. Energy minimization of the dipolar energy
yields the lowest energy magnetic configurations of regular
n-sided polygons and several platonic solids. We demon-
strate that the magnetic states realize the ME effect and
possess multipolar moments, spin current, and ME polari-
zation. Exact diagonalization of the interaction matrix of
the ground state sectors yields double degenerate spectra.
These degeneracies do not match the dimensions of the
pertinent point groups. For example, in the tetrahedral
cluster with lowest magnetic energy mode shown in Fig. 1,
the dimensions of the irreducible representations (irreps) of
the tetrahedral point group, 23(T) (hereafter, we use
international notation for point groups, and include
Schoenflies notation in parenthesis) are 1,1,1 and 3 [20].
The two nontrivial subgroups of 23 compatible with the
magnetic configuration, have only one dimensional irreps
each. The degeneracy of the eigenvalues are tied to the
symmetry and not to the specific form of the Hamiltonian,
thus we have map the ground state (GS) sector in each case,
into an effective Hamiltonian Ĥf where collinear dipoles
are coupled via Ising-like interactions. The spectrum of Ĥf

yields doublets and more important, Ĥf reflects the
symmetries of the GS of the dipolar clusters. We found
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that the symmetry group of regular polygons with several
vertices n ¼ 2ð2sþ 1Þ (s > 0 and integer) is the double
chiral dihedral point group n22ðD̃nÞ. Its generators allowed
us to determine Q that in this case is diagonal, symmetric,
and has two independent coefficients. For regular polygons
with n ¼ 4s, the symmetry group corresponds to the
double point group n̄2mðDðn=2ÞdÞ which yields symmetric
diagonal Q with one independent coefficient. The outcome
for regular polyhedra is related to regular polygons. Indeed,
the symmetry group of the cube and the octahedron is the
double group 4̄2mðD̃2dÞ and thus in both cases Q is
diagonal with a single independent coefficient. For the
tetrahedron the symmetry group is the double group
422ðD̃4Þ and Q has two independent matrix elements
along the diagonal. Double groups are subset of SU(2)
and arise in systems with half-integer angular momentum
and spin-orbit interaction.
Magnetoelectric effect.—The ME effect can be intro-

duced via an expansion of the free energy in terms of
H and E [13], namely F ðE;HÞ ¼ F0 − ðϵij=8πÞEiEj−
ðμij=8πÞHiHj −QijEiHj þ � � �, where ϵij, μij are, respec-
tively, the dielectric and the magnetic permeability.
Derivative of F in H gives M and derivative of F in E
gives P, therefore in the linear ME effect P ¼ QH and
M ¼ QE in proper units. The ME tensor changes sign upon
r → −r or t → −t, so that a linear ME requires a simulta-
neous violation of I and T symmetries. To describe the ME
effect in terms of observable order parameters a common
approach is to associate the shape ofQ to MEmoments that
arise from the magnetic multipolar expansion [8].
Expanding the magnetization energy in an inhomo-

geneous magnetic field H in powers of the field gradients
at some reference point: Hint ¼ −

R
(mðrÞ · Hð0Þ−

ximj∂iHjð0Þ)d3r − � � � ¼ −M · Hð0Þ − að∇ · HÞjr¼0−
t · ð∇ × HÞjr¼0 − qijð∂iHj þ ∂jHiÞjr¼0 − � � �, one
identifies directly a ¼ 1

3

R
r ·mðrÞd3r as a monopolar

moment; t ¼ 1
2

R
r ×mðrÞd3r, as a toroidal moment dual

to the antisymmetric part of the tensor ∂iHj; and, a traceless
symmetric tensor qij¼ 1

2

R
(ximjþxjmi− 2

3
δijr ·mðrÞ)d3r

that describes the quadrupole magnetic moment of the
system.
A microscopic mechanism connecting the electric dipole

with the spin operator is the spin-orbit interaction that
transfers anisotropy from the real space into the spin space.
The ME effect and the spin currentJ s ∝ si × sj are directly
related in noncollinear spin structures as, for instance, the
spiral state. In magnets, J s is associated with the spin
rigidity and it is induced between two spins with generic
nonparallel configurations. In Ref. [9] it has been shown
that J s in noncollinear magnets leads to the electric
polarization P ∝ eij ×J s, where eij is the director vector
joining spins si and sj. We show the classical correspon-
dence of the spin current in Supplemental Material [21].
The model.—The dipolar classical Hamiltonian for the

systems, in units of joule [J], reads

Hdip ¼
γ

2

Xn

i≠k¼1

m̂i · m̂k − 3ðm̂i · êikÞðm̂k · êikÞ
jri − rkj3

: ð1Þ

Here, êik ¼ ðri − rkÞ=jri − rkj, and γ ¼ ðμ0m2
0=4πÞ has

units of ½Nm4� and contains the physical parameters involved
in the energy such that μ0, the magnetic permeability, and
m0, the intensity of themagneticmomentswith units ½m2A�.
From now on we normalize all distances by the cluster
side length L, that is x̂i ¼ ri=L. Dipoles magnetic moments
are normalized by mi ¼ m0m̂i, have unit vector: m̂i ¼
ðsin αi cosφi; sin αi sinφi; cos αiÞ, and are located at the
vertices x̂i of regular polygons or platonic solids. They
rotate in an easy plane described in terms of a polar angle αi
chosenwith respect to the ẑ axis, and a fixed azimuthal angle
φi that accounts for the projection in the x̂-ŷ plane of the
vector joining the site i with the centroid of the cluster.
It is straightforward to show that the dipolar energy of our

dipolar clusters is separable into symmetric and antisym-
metric exchange contributions. Indeed for odd polygons,

EðoddÞ ¼ γ
Xs

k¼1

1

Δ3
k

�Xs

i¼−s
m̂i · m̂iþk

þ 3

2
tan

�
π

n
k

�Xs

i¼−s
ðm̂i × m̂iþkÞ · ẑ

�
; ð2Þ

with Δk ¼ sin ½ðπ=nÞk�=sinðπ=nÞ and s is related to the
number of vertices via n ¼ 2sþ 1. For polygons with an
even number of vertices the dipolar energy reads

EðevenÞ ¼ γ
Xn=2−1

k¼1

�
1

Δ3
k

Xn

i¼1

m̂i · m̂iþk

þ 3

2Δ3
k

tan

�
π

n
k

�Xn

i¼1

ðm̂i × m̂iþkÞ · ẑ
�

þ γ

Δ3
n=2

Xn=2

i¼1

½−2m̂i · m̂iþn=2 þ 3m̂z
i m̂

z
iþn=2�: ð3Þ

FIG. 1. Minimum energy magnetic configurations of pentago-
nal, hexagonal, tetrahedral, cubic, and octahedral dipolar clusters.
The angle of rotation α and the easy plane of rotation are shown.

PHYSICAL REVIEW LETTERS 125, 237602 (2020)

237602-2



The first term in Eqs. (2) and (3) is a symmetric exchange
interaction between all dipoles. The second term is an
antisymmetric exchange, hDM ¼ JDM · ðm̂i × m̂iþkÞ, with
JDM ¼ ð3μ0=8πL3Δ3

kÞ tan ½ðπ=nÞk�ẑ (in units of ½N=A2m3�)
also known as the Dzyaloshinskii-Moriya interaction
[22]. Dipolar energy for even polygons has two additional
exchange contributions between dipoles located at
opposite vertices in the cluster. These terms are written
separately from the main sum because in the limit:
limk→n=2 tan½ðπ=nÞk�→∞, together with ðm̂i × m̂iþkÞ → 0.
More important, they compel for opposite dipoles to be in a
collinear configuration. The spin-orbit interaction shown
here is also manifested in the energy of polyhedral clusters,
as we show in Supplemental Material [21].
Classical ground states.—For an even regular polygon

the ground state can be computed directly from Eq. (3) and
it is αk¼ð−1Þkþ1ðπ=2Þ. Figure 1 shows the resulting anti-
ferromagnetic mode for the hexagonal cluster. For odd
polygons, the ground state configuration of Eq. (2) is
satisfied by polar angles ðα−s; α−sþ1;…α−1; 0; α1…αs−1;
αsÞ, that satisfy α−k ¼ −αk by symmetry and may be
computed numerically (see Supplemental Material [21]).
Moreover, we considered the dipolar Hamiltonian

of three platonic solids: the tetrahedron, the cube,
and the octahedron Fig. 2. Energy minimization of
Eq. (1) resulted in the lowest energy magnetic configura-
tions shown in Fig. 1. For the tetrahedron the GS polar
angles for all dipoles yield αðtÞk ¼π=2. The cube is such that

αðcÞk ¼ð−1Þkþ1arctanð1= ffiffiffi
2

p Þ. In the octahedron, collinear
dipoles have equal α and at all faces the sum of α yields π.
For all polygons and polyhedra the net magnetization along
ẑ, mz ¼

P
i cosðαiÞ ¼ 0. In general, point symmetry oper-

ations when applied to the polygons and polyhedra studied
here may alter the magnetic state beyond the reversal of the
orientation of the dipoles in the lowest energy magnetic
configurations shown in Fig. 1. In those cases, T is not
enough for restoring the original magnetic configuration.
Instead in this Letter we apply a projective symmetry
analysis to accomplish that goal.
Magnetoelectric moments.—The moments of finite clus-

ters play a crucial role toward the implementation of the
ME effect in two and three dimensional natural or tailored
made lattices [23]. The GS of the dipolar clusters studied
here are odd under I and T , and therefore a nonzero ME

response is expected. The ME responses for all clusters are
summarized in Tables I and II. In Table I the first three
columns show ME moments t ¼ P

k x̂k × m̂k, qαβ ¼P
kðx̂αkmβ

k þ x̂βkm
α
k −

2
3
δαβx̂k · m̂kÞ, and a ¼ P

k x̂k · m̂k.

Fourth and fifth columns show the spin current J s ¼Pðn=2Þ−1
k¼1 jðkÞs with jðkÞs ¼ m̂k × m̂kþ1 [24] and ME polariza-

tion P ¼ Pðn=2Þ−1
k¼1 x̂k;kþ1 × jðkÞs , where a, t, and q are given

in units of [m0L], J s in units of γ=L2 ¼ ½Jm� and P in
units of γ=L (numerical values can be found in
Supplemental Material [21]). We found that most polygons
with n ¼ 2sþ 1 vertices realize a toroidal moment in the
x-y plane and quadrupolar moment. J s and P are also
manifested in all odd polygons. Even polygons have
spin current along the ẑ axis, J z ¼ ðn − 1Þ sin ð2π=nÞ
and polarization vector P ¼ sin ð2π=nÞ½− cos ðπ=nÞ;
sin ðπ=nÞ; 0� in the x-y plane. The square has quadrupolar
moment qx2−y2 ¼ 4

ffiffiffi
2

p
(in units of m0L) but aside from it,

qαβ, a, and t cancel out in all even polygons. The ME
response in these cases is not due to multipole moments
from the second order terms in the series expansion ofHint.
Indeed, the antiferromagnetic ground state configuration of
hexagonal and octagonal clusters resemble a magnetic
hexapole and octupole, respectively.
In three dimensional clusters, there is not a Eulerian

trail, and therefore J s and P are computed using the
Hamiltonian path, a trail that visits each site once.
Polyhedra, except the cube, have toroidal moment along

FIG. 2. x-y projection (top view) of the minimum energy
magnetic configuration states of dipoles at the sites of tetrahedral,
cubic, and octahedral clusters.

TABLE I. ME moments, spin current, and polarization for
polyhedral and polygonal clusters. Detailed expressions can be
found in [21].

C a t qα;β J s P

Odd polygons 0 tx, ty qx2−y2 ,qx2−z2 jx, jy, jz px, py, pz

Triangle 0 ty 0 jx, jy, jz px, pz

Even polygons 0 0 0 jz px, py

Square 0 0 qx2−y2 ; qx2−z2 jz px, py

Tetrahedron 0 ty 0 jz px

Cube 0 0 0 jx, jy px, py

Octahedron Yes tx, ty qx2−z2 jx, jy, jz 0

TABLE II. Diagonal elements of HðCÞ
f , cluster’s double groups

of symmetry (SG) (international notation) and diagonal elements
of Q [21].

C HðCÞ
f

SG Q

Square ðσ̂x;−σ̂xÞ 4̄2 m ðQ11;−Q11Þ
Hexagon ðσ̂y; σ̂y; σ̂yÞ 622 ðQ11; Q22Þ
Tetrahedron ðσ̂y; σ̂yÞ 422 ðQ11; Q11; Q22Þ
Cube ðσ̂x;−σ̂x; σ̂x;−σ̂xÞ 4̄2 m ðQ11;−Q11; 0Þ
Octahedron ðσ̂x;−σ̂x; σ̂xÞ 4̄4 m ðQ11;−Q11; 0Þ
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the ŷ axis, like the odd polygons. The tetrahedral cluster has
ty ¼ −1, spin current andME polarization along the ẑ and x̂
axes, respectively. The cube has no moments butJ s andP
in the x-y plane. The octahedral cluster has monopolar,
quadrupolar, and toroidal moments in the x-y plane, spin
current with components along all axes and P ¼ 0.
Ground state sector.—The GS sector of a cluster C, has

Hamiltonian HðCÞ
GS ¼ P

jk m̂jA
ðCÞ
jk m̂k. Coefficients, A

ðCÞ
j;k , are

equal to the dipolar energy between dipoles j and k in the
ground state of cluster C, further AðCÞ is symmetric and has
no diagonal elements. We gain insight into the symmetries
of even polygons and polyhedra by solving the spectrum of
the interaction matrix AðCÞ. Indeed diagonalization of such a
matrix for all clusters yields eigenvalues with even degen-
eracies which do not correspond to the dimensions of the
irreps of the corresponding point groups. We address this
issue by building an effective Hamiltonian Ĥf where
matrix elements consist of link variables that represent
Ising interactions among collinear dipoles. As an example,
consider the hexagonal cluster in Fig. 1. Exact diagonal-
ization of the interaction matrix AðhÞ yields a spectrum with
multiplicities f1; 2; 2; 1g, where the GS has degeneracy 2.
The point group of the hexagon is the dihedral group 622
(D6) with h ¼ 12 symmetry elements. Of the 12 sym-
metries, the magnetic configuration preserves two threefold
rotations respect to the principal axis (ẑ), and two twofold
rotations respect to axes perpendicular to ẑ. Take now any
pair of collinear dipoles (there are three of them in the
hexagon), say the ðp; qÞ pair, and associate an Ising
variable (matrix element) up;q according to the following
rules: if m̂p · m̂q ¼ 1, up;q ¼ i ¼ −uq;p; if m̂p · m̂q ¼ −1,
up;q ¼ 1 ¼ uq;p provided p and q point into the cluster
and up;q ¼ −1 ¼ uq;p provided p and q point out of
the cluster, in all other cases up;q ¼ 0. Applying this
procedure to the hexagon yields a 6 × 6 Hermitic matrix
consisting of three σy Pauli matrices along its diagonal,

namely ĤðhÞ
f ¼ ðσ̂y; σ̂y; σ̂yÞ. The spectrum of ĤðhÞ

f is
f−1;−1;−1; 1; 1; 1g, and therefore it preserves the degen-
eracies of the eigenvalues of AðhÞ. Ĥf reduces HGS to its
diagonal form and, more important, it produces a repre-
sentation easy to deal with symmetrywise. Applying the
twelve symmetries of 622 to the hexagon permute its sites.
We denote these point symmetry operations by R. Some of
these permutations will change the sense of Ising variables

in ĤðhÞ
f . However, spin current, ME moments, and ME

polarization remain unchanged under R. For those pairs of
sites affected, we can apply the σ̂z operator which flips the
Ising variables and fixes the problem. For instance, if the
operation R reverses u1;2 connecting sites 1 and 2, we can
fix it by combining R (in the regular representation) with
the matrix Λ12 ¼ ðσ̂z; 1̂2; 1̂2Þ (1̂2 the 2 × 2 identity matrix).

The combined operation R ¼ Λ12R leaves ĤðhÞ
f invariant,

as it does the equivalent combined symmetryR ¼ Λ0
12R ¼

ΛΛ12R with Λ ¼ ð−1̂2;−1̂2;−1̂2Þ. Further, Λ12 and Λ are
gauge transformations. Applying this procedure to the
symmetry operations of the point group 622, one finds
that the six symmetries that alter Ising variables in the
hexagonal cluster can be fixed by combining them with
gauge transformations. Those R that leave u unchanged,
can be combined with gauge transformation Λ to yield its
twin symmetry R ¼ ΛR. Doing so for all symmetries of
622 one finds that the number of symmetry elements of the
hexagonal dipolar cluster has been doubled to 24 elements,
it has three additional classes and three additional irreps of
dimension two each. Indeed, it has become the double
group 622, a result that makes sense in the light of the spin-
orbit interaction shown in Eq. (3). Table II shows the
symmetry groups and Ĥf for all clusters studied here.
Double groups and Q.—The program implemented on

the hexagon, was applied to all even polygons and poly-
hedra examined in this Letter. In polygons with n ¼ 4s
vertices, the symmetry group corresponds to the double
group n̄2m, while in polygons with n ¼ 2ð2sþ 1Þ vertices
it is the double group n22. n22 and n̄2m differ in that the
first is chiral while the second is not. This has an impact in
the shape of Q. Indeed, Q is a second rank axial tensor
which connects a polar vector with an axial vector. For a
system, whose symmetries are determined by a point group
G, a polar vector E and an axial vector M transform
according to irreps ΓE and ΓM of G. The number of
independent matrix elements of Q is the number of times
that the scalar irrep, Γ1 is contained in the decomposition of
the direct product ΓE ⊗ ΓM. For n22 point groups, the
number of times that Γ1 is contained is equal to 2, while for
n̄2m, Γ1 is contained once. Therefore, in the first case the
number of independent matrix elements of Q is two, while
in the second case is one. Applying the generators of
symmetries of the respective point groups to Q, (Q trans-
forms according to the rules of an axial vector) it is
straightforward to determine the positions of those coef-
ficients in each case. For the tetrahedron, cube and
octahedron the symmetry groups are 422, 4̄2m, 4̄2m,
respectively. Table II shows the ME tensor in all cases [21].
Conclusions.—We have shown that magnetic dipoles at

the sites of two and three dimensional clusters, some of
them motif of crystallographic space groups, are active for
ME effect, carry spin current and in several cases manifest
antisymmetric and symmetric ME moments. Using γ as the
relevant energy scale, we estimate that our systems achieve
thermal stability for magnetic degrees of freedom on a scale
of 10 [nm]. For polarization, in units of [γ=L], and spin
current, in units of [γ=L2], we find that typical magnitudes
are of the order of unity. We can estimate these values for
magnetic nanoarrays: taking, for instance, permalloy nano-
islands with L ¼ 100 × 10−9 ½m� one estimate the spin
currents to be of the order of J s ∼ 4 × 10−25 ½Jm� and the
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polarizations aboutP ∼ 4 × 10−32 ½Jm2�. We found that the
symmetries of the GS sector of these clusters are realized by
double point groups, extensions of ordinary point groups
that accommodate states with half-integer angular momen-
tum, and consequently hold even dimensional representa-
tions. The dipolar Hamiltonian in these systems exposes a
spin-orbit coupling that manifests in a Dzyaloshinskii-
Moriya interactionwhich explains the onset of double group
symmetries. The origin of half-integer angular momentum
associated to even dimensional irreps can be explained in
terms of the spin current in these clusters. Indeed, in two
dimensions a magnetic flux Φ can be defined from the spin
current across the cluster. For the case of even polygonswith
circumradius ρ ¼ ½L=2 sinðπ=nÞ� this flux becomes
Φ¼ ðρ=m0ÞJ z ¼ f½ðn− 1Þ sin ð2π=nÞ�=½8π sin ðπ=nÞ�g, in
units of ½μ0m0=L�. Φ is proportional to a magnetic charge
g, 2πΦ ¼ g, which in the large n limit, g → ðn − 1Þ=2. In
even clusters g takes half-integer values in units of ½μ0m0=L�
and it is responsible of a change of the net angular
momentum of our clusters from integer to half-integer
values [25].
The detection of the ME effect could be performed by

Raman spectroscopy, which is extremely sensitive to
changes in the electric polarization as demonstrated in
[26] or using similar optical probes, as has been shown in
[27] for samples under an increasing external magnetic
field. Given their geometry and magnetic properties, we
suggest experiments in Copper Keplerates [28] or related
compounds [29].
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