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We study nonlinear response in quantum spin systems near infinite-randomness critical points.
Nonlinear dynamical probes, such as two-dimensional (2D) coherent spectroscopy, can diagnose the
nearly localized character of excitations in such systems. We present exact results for nonlinear response in
the 1D random transverse-field Ising model, from which we extract information about critical behavior that
is absent in linear response. Our analysis yields exact scaling forms for the distribution functions of
relaxation times that result from realistic channels for dissipation in random magnets. We argue that our
results capture the scaling of relaxation times and nonlinear response in generic random quantum magnets
in any spatial dimension.
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The use of strong electromagnetic fields to probe
solid-state systems and pump them into exotic states has
been a fruitful research direction. One paradigm for these
experiments has been “pump-probe spectroscopy,” where a
system is pumped with an intense field, creating a far-from
equilibrium state, whose response to a weaker “probe” field
is subsequently measured [1–11]. Two-dimensional coherent
spectroscopy (2DCS) [12–16] is a conceptually similar
multipulse technique, but operates in a regime where the
pump changes the state of the system only weakly. Instead of
creating and characterizing far-from-equilibrium states,
2DCS probes multitime correlation functions of a given
equilibrium state, which contain qualitative information
not captured by linear response: e.g., they can distinguish
between “inhomogeneous” broadening (i.e., a continuum
of response due to many separate sharp modes with
wide frequency spread) and “homogeneous” broadening
(i.e., broadening due to finite excitation lifetimes).
Consequently 2DCS can isolate interaction effects in settings
where linear response does not diagnose the central
phenomena of interest [17–24], such as in systems exhibiting
fractionalization [25,26] or localization [6,27,28].
Here, we construct an asymptotically exact theory for the

response of random quantum systems probed using 2DCS (or,
more generally, pump-probe spectroscopy). We obtain exact
results near the quantum critical point (QCP) of the random
transverse-field Ising model (RTFIM). This is a paradigmatic
example of a system controlled by an infinite-randomness
fixed point (IRFP) [29–32], and hence can be modeled as an
ensemble of weakly interacting two-level systems (TLSs).
The properties of this ensemble are determined by scaling
exponents associated with the IRFP. Anomalous exponents
persist away from the QCP due to Griffiths effects [30]. While
some information about the TLS distributions can be extracted

from linear response [33–35], we show that nonlinear
response reconstructs the full TLS distribution function as
well as the residual interactions among TLSs.
Our central results concern the lifetimes of TLSs at

IRFPs and in quantum Griffiths phases. Although the
coupling of the system to its environment is irrelevant in
the renormalization group sense, it is dangerously irrel-
evant, and causes the TLSs to have finite lifetimes. For
random quantum magnets coupled to phonons (or other
non-magnetic baths), we find that the TLS relaxation times
are power-law distributed both at criticality and into the
Griffiths phase. Local probes measure the relaxation of a
typical TLS, which is exponential with a rate we compute.
However, the spatially averaged response probed by most
optical experiments picks up the entire broad spectrum of
relaxation times. We show that 2DCS response in the
frequency-time plane extracts exponents characterizing
both the relaxation-time and resonance-frequency distribu-
tions. Although exact analytical results are only possible in
one dimension, we argue that the phenomenology of the
response is generic to a large class of random quantum
magnets in any spatial dimension.
Random TFIM.—We begin with the 1D RTFIM,

HRTFIM ¼ −
X
i

ðhiσzi þ Jiσxi σ
x
iþ1Þ; ð1Þ

where the hi, Ji are positive independent and identically
distributed (i.i.d.) random variables. (Swapping σx and σz

relative to convention yields a more natural TLS
basis later.) The QCP in this model occurs when
2δ≡ ðln hi − ln JiÞ ¼ 0, where ð� � �Þ denotes a disorder
average. The RTFIM can be iteratively diagonalized by
an asymptotically exact real-space renormalization-group
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(RSRG) method [30,31,36]. For the ground state, the
RSRG rules are as follows. One picks the strongest
coupling. If it is a bond Ji, one fuses the spins it connects
into a superspin, which experiences an effective transverse
field hi−1hi=Ji. If it is a transverse field hi, one eliminates
site i by placing it in its j þ ẑi state, creating an effective
perturbative coupling JiJiþ1=hi. These steps are iterated
until all spins have been decimated.
The RSRG yields paramagnetic (PM) and ferro-

magnetic (FM) phases separated by a QCP, which is an
IRFP with extremely broad power-law distributions of
renormalized couplings (hence the term “infinite random-
ness”). This leads to the following properties: (i) Critical
spatial and temporal fluctuations are infinitely anisotropic,
and scale via the relation ln t ∼

ffiffiffiffiffiffiffiffi
xðtÞp

. (ii) At criticality,
the typical magnetic moment of a superspin at scale x is
μ ∼ xϕ=2, where ϕ is the Golden mean. (iii) The QCP is
flanked by Griffiths phases on both sides. In the PM
Griffiths phase, for example, the system as a whole is
not magnetically ordered, but has rare FM regions
which locally appear to be on the “wrong side” of the
transition and dominate low-frequency response, as we
discuss next.
Rare TLSs in the Griffiths phase.—A field decimation

effectively decouples a superspin (FM cluster) from the rest
of the system, whereas a bond decimation grows a FM
cluster. A cluster that decouples at energy scale ε contrib-
utes to dynamics at ω ¼ ε, but freezes out at lower
frequencies. Clusters that are slow compared to ω are also
unimportant to dissipative response: to understand response
at ω, we must characterize FM clusters generated by field
decimations occurring at scale ε ¼ ω.
In the PM, the system initially looks critical on short

distances, but eventually on coarse graining out to the
correlation length ξ ∼ ðln ε�Þ2 ∼ δ−2, the energy scale
reduces below ε� ∼ e−1=δ. The RG then crosses over into
the off-critical PM regime where it is overwhelmingly
likely to decimate fields rather than bonds. For frequencies
ω < ε�, the system can therefore be viewed as a set of rare
FM clusters weakly coupled by the residual bond terms.
Such clusters contribute anomalous power laws to low-
frequency response: a locally FM cluster of l sites has an
exponentially small probability (in l) of occurring. The two
parity eigenstates j�i ¼ 1=

ffiffiffi
2

p ðj↑i⊗l � j↓i⊗lÞ of each
cluster form a TLS separated from the other states by an
energy gap. Tunneling between these occurs at lth order in
perturbation theory, leading to a TLS resonant frequency
that obeys logð1=ωÞ ∝ l. Combining this with the expo-
nential-in-l probability, we find that TLSs flippable at
frequency ω are of size ∼j lnωj, i.e., are only power-law
rare in ω, with spacing xðtÞ ∼ t1=z, where z is a continu-
ously varying exponent computed below. Note that xðtÞ, the
characteristic length scale at time t ∼ ω−1, is the spacing
between rare TLSs, and is distinct from the parametrically
smaller size lðtÞ ∝ log t of each TLS.

Precise scaling forms result from running RSRG from
microscopic energy scale ΩI (set to 1 throughout) to the
probe scale Ω, where the remaining degrees of freedom are
these rare TLSs. The bond and field distributions are

PΩðJÞ ¼
uΩ
Ω

�
J
Ω

�
uΩ−1

; ρΩðhÞ ¼
τΩ
Ω

�
h
Ω

�
τΩ−1

; ð2Þ

with uΩ ¼ 2δ=e2δΓ − 1 and τΩ ¼ 2δ=1 − e−2δΓ, where
Γ ¼ lnΩI=Ω. As δ → Ω, uΩ ∼ τΩ ∼ 1=Γ, and both distri-
butions tend to PðJÞ ¼ 1=ΓJðΩ=JÞ1−1=Γ which broadens as
the RG flows to Γ → ∞, as is characteristic of IRQCPs.
ρΩðεÞ is the density of TLSs with splitting ε < Ω at scaleΩ.
The effective size of a rare TLS at energy scale ε is obtained
by running the RG to Ω ¼ ε and then using the rare region
arguments above, yielding

lε ¼ τ−1ε j ln εj ∼ j ln εjð1 − ε2δÞ=2δ: ð3Þ

The full expression (3) captures both the lε ∼ j ln εj2 scaling
at criticality (by taking δ → 0 before ε → 0) as well as
finite-δ PMGriffiths behavior (the opposite order of limits).
We may estimate the magnetic moment of a TLS by
viewing it as composed of n ∼ l=ξ critical clusters of size
ξ and moment μξ ∼ ξϕ=2, using ξ ∼ δ−2, and replacing δ by
its renormalized value:

με ∼ j ln εj½2δ=ð1 − ε2δÞ�1−ϕ; ð4Þ

which becomes μ ∼ j ln εjϕ at criticality (as noted above).
Relaxation processes.—The RSRG generates infinitely

sharp TLSs, corresponding to strictly localized excitations.
In realistic systems, these TLSs eventually relax.
Relaxation can occur either because the system is coupled
to an extrinsic reservoir, or acts as its own bath [37] because
of interactions; we focus on extrinsic baths, but our results
should also generalize, with some modifications, to intrin-
sic baths treated self-consistently [37–39]. Two other key
distinctions in terms of relaxation dynamics are (i) between
magnetic baths that couple directly to the order parameter
σx (and therefore involve magnetic degrees of freedom,
e.g., nuclear spins) and nonmagnetic baths that do not (e.g.,
phonons), and (ii) between baths with rapidly vanishing
low-energy spectral density J ðωÞ ∼ ωs, s > 1 (super-
Ohmic baths, defined more precisely below) and those
with s ≤ 1 (i.e., Ohmic or sub-Ohmic) [40]. Our central
new results involve nonmagnetic baths; before turning to
these, we briefly comment on magnetic ones [41–46]. A
magnetic bath always has a matrix element (∝ με) to flip a
single TLS, and in the Ohmic or sub-Ohmic cases couples
strongly to TLSs and destroys the IRQCP [41–46]. For
super-Ohmic baths, however, the IRQCP survives, and one
can straightforwardly compute excitation lifetimes using
Fermi’s golden rule, as τ−1 ∼ μ2εε

s. This sets timescales for
both energy relaxation (T1) and dephasing (T2).
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We now turn to the more delicate relaxation channel due
to the coupling of TLSs to phonons, which modulate the
distance (hence coupling) between nearby spins. We can
incorporate phonons through the change Ji ↦ Jið1þ X̂iÞ
to the bond terms in Eq. (1), where X̂i ¼

P
i λiðb†i þ biÞ is

the coupling to phonon modes, treated as purely harmonic
[40] with Hamiltonian Hb ¼

P
iΩib

†
i bi. For now we also

treat each spin as coupled to its own phonon bath;
later we comment on more realistic cases. We introduce
the spectral density of the bath, J iðΩÞ ¼ J ðΩÞ ¼
π
P

α λ
2
i;αδðΩ −Ωi;αÞ≡ gΩ1−s

c Ωse−Ω=Ωc , where g is a
dimensionless measure of dissipation and Ωc is a high-
frequency cutoff for the bath [40]. Because of the paucity of
Ω → 0 bath modes, low-frequency TLSs are always weakly
coupled to a super-Ohmic bath, so the RG proceeds as in
the closed system. Since each bond is coupled to its own
bath, a TLS at energy ε is coupled to OðlεÞ different baths,
so the effective spectral density is ∼lεJ .
Since phonons transform trivially under the Ising

symmetry, the bath cannot couple to the order parameter;
instead, it can only couple diagonally to the TLS, i.e., it can
modulate its transverse field, leading to pure dephasing.
A TLS subject to super-Ohmic pure dephasing remains
phase coherent to infinite time [47]. This is because a super-
Ohmic bath has little weight at low frequencies, so does not
cause long-time drift of the TLS resonant frequency. (For
similar reasons, 3D crystals have sharp Bragg peaks despite
the presence of phonons.) To get true broadening of the
TLS line in the zero-temperature limit, we therefore need to
consider longitudinal relaxation processes where a puta-
tively decoupled TLS flips its state via the weak residual
bonds that couple it to other, lower-energy TLSs. The role
of the bath is to place this decay channel on shell.
To compute the relaxation rate, consider resonantly

exciting a TLS with splitting ε. Although it has nominally
decoupled at that energy scale, it still has residual couplings
Jε to its (lower-energy) neighbors. It can therefore decay into
the bath via a process where it “flip flops” with its nearest
neighbors (at energy ε0 ≪ ε) while depositing energy ε − ε0
into the bath. Such decay occurring at rate γ yields relaxation
times T2 ¼ 2T1 ¼ γ−1. The rate of decay of a TLS of energy
ε via flip-flop processes with another TLS with energy
ε < ε0 can be estimated via Fermi’s golden rule to be
γε;ε0 ∼ lεJ2εJ ðε − ε0Þ ∼ gJ2ε j ln εj=τεðε − ε0Þs, where lε
accounts for the enhanced bath spectral density. Since J
is broadly distributed, so is γ. We compute the distribution of
γ in terms of the distributions of the TLSs with ε0 < ε and the
residual couplings obtained by running RSRG down to scale
ε, using Eq. (2), and neglecting the weak ε0 dependence
of γε;ε0 :

PεðγÞ ¼
Z

ε

0

dε0ρεðε0Þ
Z

ε

0

dJPεðJÞδðγ − γε;ε0 Þ

¼ uε
2γ

�
γ

γ�ε

�uε
2

Θðγcε − γÞ; ð5Þ

where γ�ε ∼ lεεsþ2 ∼ =2δj ln εjε2þs. The relaxation rates are
broadly distributed; thus, the late-time response at scale ε
averaged over the random environments of the TLSs at that
scale will be dominated by the tail of PεðγÞ. This corre-
sponds to TLSs with anomalously weak relaxation, and
leads to a slow power-law decay of the signal [Fig. 1(a)].
However, the response to local probes is sensitive to the
typical decay rate,

γtypε ¼ eln γ ¼ γ�εe
− 2
uε ¼ 1 − ε2δ

2δ
j ln εjεsþ2e

1−ε−2δ
δ ; ð6Þ

which has a stretched-exponential suppression in the
PM Griffiths phase (δ > 0) that is absent at criticality
[Fig. 1(b)]. Consequently, local response at energy ε
sharpens on moving off-criticality into the PM.
2DCS response.—We now discuss how to probe these

line shapes using nonlinear spectroscopy, focusing on
2DCS [12,13,28]. We consider the following protocol:
initialize the TLS in its ground state; apply two sharp pulses
A and B, separated by time τ, that couple to the magneti-
zation; wait time t and measure the magnetization. In terms
of the Pauli matrices σx;y;z, the TLS has Hamiltonian

ImPx
PP

(a) (b)

(c)

FIG. 1. Relaxation and 2DCS in the RTFIM. (a) The average
decay is power law, and is faster at the QCP (blue) than in the PM
Griffiths phase (red); decay is slower at lower frequencies (solid
vs dashed lines). However, evolution to δ ¼ 0 is smooth. (b) The
typical decay is exponential, e−γ

typ
ε τ, and the ε dependence of γtypε

at QCP is a power law with logarithmic corrections, sharply
distinct from its stretched-exponential behavior in the Griffiths
phase. (c)“Mixed” 2DCS plot of the average pump-probe
response of the RTFIM at criticality, Eq. (8). Contour lines
and color scale are logarithmic. The 2DCS response for δ > 0 is
similar and evolves smoothly out of δ ¼ 0. (We used a super-
Ohmic s ¼ 2 bath.)
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H0 ¼ −ε=2σz, j0i ¼ j þ ẑi and the pulses are δ-function
kicks that couple to σx. As these rotate the TLS by θA;B in
the yz plane, corresponding to action RðθÞ ¼ eiðθ=2Þσx ,
absent relaxation the protocol prepares the state (setting
ℏ ¼ 1) jψðt; τÞi ¼ e−iH0tRðθAÞe−iH0τRðθBÞj0i, and we
measure Pxðt; τÞ ¼ hψðt; τÞjσxjψðt; τÞi. In the perturbative
limit, Rθ ≈ 1þ iθσx þ � � �, and only odd powers contribute
to Px. The leading nonlinear contributions are cubic
in θ. There are several distinct cubic channels; a key
insight of 2DCS is that these channels oscillate at
different frequencies with respect to t and τ [13]. We
focus on the pump-probe (PP) contribution, in which
both bra and ket are flipped by the initial pulse,
Px

PP ∝ Imh0jσxeiH0ðτþtÞσxe−iH0tσxe−iH0τσxj0i, which looks
like a linear-response correlator measured in the state σxj0i
driven out of equilibrium by the drive. When relaxation is
included, the PP response is subject to longitudinal relax-
ation between pulses, and transverse relaxation after the
second pulse, yielding

Px
PPðt; τÞ ∼ e−τ=T1e−t=T2 sin εt; ð7Þ

and hence distinguishes homogeneous broadening due to
longitudinal relaxation from inhomogeneous broadening:
only the former depends on τ. In a 2DCS experiment the PP
response is convolved with those from other channels;
individual channels are isolated by Fourier transforming the
full response with respect to ðt; τÞ.
Near an IRFP this conventional approach is complicated

by the broad distribution of low-frequency TLSs and
corresponding relaxation times. The 2DCS response is
neither purely reactive nor purely absorptive; in practice, to
extract the absorptive response one often assumes a
Lorentzian line shape, an assumption that fails for
IRFPs. We propose the following resolution to this diffi-
culty. Instead of Fourier transforming with respect to both t,
τ, we consider the mixed response in the ðωt; τÞ plane. The
PP channel can be isolated from other channels by time
averaging in τ over a window ω−1

t . To compute the full PP
response, we combine the single-TLS response (7) with the
following: (i) the density of TLSs with splitting ε is
ρΩðεÞ ∼ 1=ε1−2δ; (ii) such TLSs relax with T2 ¼ 2T1 ∼
γ−1 distributed according to Eq. (5); and (iii) each TLS
couples to a probe field via its moment με (4), with
Px

PP ∼ ∼μ4ε . Accordingly, the averaged mixed pump-probe
response for ωt > 0 scales as

ImPx
PPðωt; τÞ ∼ ρΩðωtÞe−γτ=2 ∼ ω2δ−1

t μ4ωt
fωt

ðγ�ετÞ; ð8Þ

where fεðxÞ ¼ uε=2xuε=2
R
x
0 ξ

uε=2−1e−ξdξ describes the
averaged decay profile at frequency ε [cf. Fig. 1(a)].
[To arrive at Eq. (8) we used γε ≪ ε to separate out the
ωt and τ directions.] Figure 1(c) shows such a mixed-2DCS
portrait of the pump-probe response of the RTFIM at
criticality; note the rapid sharpening of the response at

low frequencies. A fixed ωt slice corresponds to fε and
hence allows us to extract γ�ε , whereas the evolution of the
peak height at τ ¼ 0 allows us to extract information on the
energy-dependent distributions and renormalized moments.
(Previous work on anomalous power-law relaxation in
2DCS focused on spectral diffusion [48], which is distinct
from the quenched disorder operational here.)
Discussion: Beyond the 1D RTFIM.—Above, we explic-

itly showed that nonlinear response of the 1D RTFIM near
criticality accesses and deconvolves critical data that are
only found in certain combinations in linear response: the
magnetic moment sets the strength of nonlinearity, the
density of TLSs sets the overall spectral intensity, the line
shape probes the distribution of residual couplings, and the
typical excitation lifetimes diagnose whether the system is
in the critical or the Griffiths regime. In fact, our results
apply more broadly. They immediately generalize to other
IRFPs and adjacent Griffiths phases, in any dimension,
since these are also described by RSRGs that decouple the
system into ensembles of localized few-level systems
which transform as irreducible representations of some
global symmetry G—e.g., the QCPs and PM Griffiths
phases of 2DRTFIMs and quantum Potts or clock chains, or
the random-singlet phase of 1D Heisenberg antiferromag-
nets [29,32,49–51]. ProvidedG is not spontaneously broken
and the bath degrees of freedom transform trivially underG,
excitations of the system must relax via the broadly
distributed residual couplings. Indeed, since all couplings
approach the distribution PðxÞ ∼ 1=x at IRFPs, the critical
2DCS response is superuniversal: distinctions between
IRFPs appear only in prefactors [52]. Likewise, the line
shapes in quantumGriffiths phases follow from very general
considerations involving the counting of rare regions. At
general IRFPs a superspinmight respond atmultiple discrete
frequencies, but since thesewill be similar inmagnitude, this
complication does not affect our scaling analysis.
One of our key results, the distribution of lineshapes,

depends only on the broad distribution of couplings
between low-energy degrees of freedom. This feature is
generic to random quantum magnets in arbitrary spatial
dimensions (even if they lack an IRFP description), as long
as two criteria are satisfied: (i) the low-energy degrees of
freedom probed by the response are localized, with residual
couplings decaying exponentially in the spacings between
them, which are exponentially distributed; and (ii) the bath
preserves an unbroken global symmetry. The former
behavior is generic [53], while the latter is typical of
several realistic baths, including phonons. However, the
density of states (which sets the intensity profile along the
ωt axis in Fig. 1) and the scaling of typical local lifetimes
are likely model specific.
We took each bond to couple to its own phonon bath.

More realistically, phonons have spatial structure, with a
dispersion ω ∼ k. Thus, a TLS at energy ε couples to a
phonon wavepacket correlated over a range 1=ε, much
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larger than the TLS size. The many effective TLSs in the
same “phonon volume” thus see a spin-phonon coupling of
the form X̂

P
i Jiσ

x
i σ

x
iþ1. Integrating out phonons can

thus generate many-spin interactions. Crucially, however,
phonons are nonmagnetic and cannot mediate flip flops
among distinct TLSs. Residual magnetic couplings
between an effective TLS and its neighbors still involve
bond terms Ji; provided that PðJÞ is broad, relaxation rates
remain broadly distributed. Hence our conclusions also
hold (up to prefactors) for realistic phonon baths.
Intrinsic energy scales in experimentally realized Ising

magnets such as cobalt niobate [54,55] lie in the regime
accessible to THz tehniques (∼0.1–10 THz ∼5–500 K).
Our results also apply to random Heisenberg antiferro-
magnets, such as BaCu2Si1−xGexO7 [34], where the
doping-dependent exchange scale ∼400 K, and the organic
salt quinolinium-ðTCNQÞ2, where “random singlet” phys-
ics has been reported [56,57] at temperatures ≲20 K. The
remaining challenge is to drive systems with enough laser
power to induce a measurable optical nonlinear magnetic
response, a milestone we expect to be reached shortly [58].

In compliance with EPSRC policy framework on
research data, this publication is theoretical work that does
not require supporting research data.
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