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Neutral silicon vacancy (SiV0) centers in diamond are promising candidates for quantum networks
because of their excellent optical properties and long spin coherence times. However, spin-dependent
fluorescence in such defects has been elusive due to poor understanding of the excited state fine structure
and limited off-resonant spin polarization. Here we report the realization of optically detected magnetic
resonance and coherent control of SiV0 centers at cryogenic temperatures, enabled by efficient optical spin
polarization via previously unreported higher-lying excited states. We assign these states as bound exciton
states using group theory and density functional theory. These bound exciton states enable new control
schemes for SiV0 as well as other emerging defect systems.
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Point defects in solid-state materials are promising
candidates for quantum memories in a quantum network.
These quantum defects combine the excellent optical and
spin properties of isolated atoms with the scalability of
solid-state systems [1–3]. Long-range, kilometer-scale
entanglement generation has been demonstrated with the
nitrogen vacancy (NV) center in diamond [4]. However, the
entanglement generation rate in such demonstrations is
limited by the optical properties of the NV center, which
exhibits significant spectral diffusion [5,6] and a small
Debye-Waller factor [7]. The neutral silicon vacancy center
in diamond (SiV0) has the potential to mitigate many of
these problems; its inversion symmetry guarantees a
vanishing permanent dipole moment, which minimizes
spectral diffusion, and over 90% of its emission is in the
zero-phonon line (ZPL) [8]. However, there has been no
report of optically detected magnetic resonance (ODMR)
for this defect, a key first step towards establishing a spin-
photon interface, and the electronic structure of SiV0 is still
not well understood [9]. A detailed understanding of the
optical transition and excited state structure of SiV0 is key
in developing preparation, manipulation and readout
schemes for quantum information processing applications.
In this work, we present the observation of previously

unreported optical transitions in SiV0 that are capable of
efficiently polarizing the ground state spin. Previous studies
on SiV0 have reported a strong ZPL transition at 946 nm,
and a weaker strain-activated transition at 951 nm [9].
Through a combination of optical and electron spin
resonance (ESR) measurements, we are able to assign

groups of transitions from 825 to 890 nm to higher-lying
excited states of SiV0. We interpret these spectroscopic
lines as transitions to bound exciton (BE) states of the
defect. We observe highly efficient bulk spin polarization
through optical excitation of these transitions, providing
another manifold of states that can be used for spin
initialization. Spin polarization via these BE states while
collecting emission from the ZPL and phonon sideband
enables the observation of ODMR. We use ODMR mea-
surements to probe the low magnetic field behavior of SiV0

where we observe no spin relaxation (T1) out to 30 ms, spin
dephasing times (T�

2) of 202 ns, and spin coherence times
(T2) of 55.5 μs at 6 K.
We observe ODMR in an ensemble of SiV0 centers using

excitation at one of the BE transitions (855.65 nm) in a
chemical-vapor deposition grown sample doped with
isotopically enriched 29Si during growth, described pre-
viously in Ref. [10]. As the microwave frequency is swept
across the zero-field splitting of SiV0, we observe
three resonance peaks in continuous-wave (CW) ODMR
[Fig. 1(a)]. The two outer peaks correspond to spin
transitions associated with centers containing 29Si, while
the central peak at 944MHz is associated with 28Si and 30Si.
The position and splitting of the lines are consistent with
previously measured hyperfine parameters [11].
We realize coherent control using pulsed ODMR on the

lower frequency 29Si hyperfine transition at 912 MHz and
observe Rabi oscillations that decay over 499� 28 ns
[Fig. 1(b)]. We measure the spin dephasing time to be
T�
2 ¼ 202� 16 ns [Fig. 1(c)] using a Ramsey sequence.
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By using a Hahn echo sequence to refocus the coherence,
we measure the spin coherence time to be T2 ¼ 55.5�
10.6 μs [Fig. 1(d)]. The spin coherence time measured here
is shorter than previous measurements of this sample using
X-band pulsed ESR, T2 ¼ 280–480 μs [10]. This likely
arises from the high density of SiV0 centers in this sample,
which gives rise to instantaneous diffusion [10,38]. At
ambient magnetic fields, the effects of instantaneous
diffusion are more pronounced because centers of different

orientations and nuclear spin projections are nearly degen-
erate. This effect limits T2 to 56 μs (see Supplemental
Material Sec. III B [12]).
We measure the spin relaxation time (T1) using pulsed

ODMR by measuring spin population decay after a variable
dark time between the initialization and readout pulses. We
observe no decay up to 30 ms at 6 K [Fig. 1(e)], consistent
with previous measurements of T1 ¼ 46 s at this tempera-
ture [10]. At higher temperatures, the spin lifetime shortens
significantly due to an Orbach process with an activation
energy of 16.8 meV [10] and we measure T1 ¼ 1.38�
0.21 ms at 50 K.
Our temperature-dependent ODMR T1 measurements on

the lower hyperfine transition are consistent with the
previously measured activation energy (see Fig. S7 [12]),
but we observe the Orbach rate prefactor to be ∼260 times
larger. This is largely due to hyperfine-induced mixing of the
SiV0 spin states (see Supplemental Material Sec. III C [12]).
The hyperfine interaction for SiV0 is ∼30 times larger than
that for the NV center and the zero-field splitting is three
times smaller [11,39], so at low magnetic field the influence
of the hyperfine interaction is much more pronounced.
Unlike nitrogen, however, silicon has spin-free nuclear
isotopes which may be used to circumvent these effects.
The observation of ODMR in SiV0 is enabled by the

discovery of additional higher-lying excited states beyond
the ZPL. Previous studies on SiV0 excited states were
limited to the 3Eu (ZPL at 946 nm) and 3A2u (ZPL at
951 nm) states but higher energy states were never
explored. Transitions between 820 and 950 nm in sili-
con-doped diamonds have been previously observed with
photoconductivity and absorption measurements, but there
has been no detailed spectroscopy of these spectral lines,
nor assignment of their microscopic origin [40–42].
In order to probe whether these transitions are associ-

ated with the SiV0 center, we correlate several types of
optical spectroscopy at low temperature (5.5 K) at ambient
magnetic field. First we perform absorption spectroscopy
over a large wavelength range, from the ionization thresh-
old (∼826 nm [40]) to 900 nm. We observe several families
of peaks near 830, 855 and 870 nm [Fig. 2(a)]. Then we
perform photoluminescence excitation (PLE) spectroscopy,
wherein we excite at these absorption wavelengths
and detect emission at 946 nm, the ZPL of SiV0. We
observe the same clusters of resonances in PLE, confirming
that the transitions are associated with the SiV0 center
[Fig. 2(b)].
Finally, we probe the interaction between these higher

lying transitions and the ground state spin of SiV0 by
measuring optical spin polarization (OSP) in bulk
ESR (∼3100 G) after excitation at these wavelengths
[Fig. 2(c)]. Specifically, we use a pump-probe measurement
to isolate the contributions from ms ¼ 0 (I0) and ms ¼ 1
(I1) spin states (see Supplemental Material Sec. VI [12]).
Remarkably, the bulk OSP reaches values up to 40%–60%
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FIG. 1. Optically detected magnetic resonance and coherent
properties of SiV0 spins. (a) CW ODMR spectrum measured at
6 K. The two outer peaks correspond to two hyperfine lines
associated with the 29Si nucleus and the central peak is associated
with 28Si and 30Si species. The solid line is a Lorentzian fit and the
linewidths are microwave power broadened. Inset: relevant
energy levels for individual spin transitions, where D denotes
the zero-field splitting and A denotes the hyperfine interaction
from the 29Si nucleus. (b) Rabi oscillation measured at 6 K
performed at the lower hyperfine transition at 912 MHz. The data
is fitted using a × e−t=T cosðωtþ bÞ þ c with T ¼ 499� 28 ns.
(c) Spin dephasing time (T�

2) measured at 6 K using a Ramsey
sequence with microwave frequency detuned from the spin
resonance by 1.6 MHz. The decay is fitted using a ×
e−τ=T

�
2 cosðωτ þ bÞ þ c with T�

2 ¼ 202� 16 ns. (d) Spin coher-
ence time (T2) measured at 6 K with a Hahn echo sequence. The
decay is fitted using a × e−2τ=T2 þ b with T2 ¼ 55.5� 10.6 μs.
The relatively large fitting error is due to the partially resolved
modulation (see Supplemental Material Sec. III A [12]). (e) Spin
relaxation times (T1) measured at 6 K and 50 K. At 6 K, no decay
is observed up to 30 ms. The blue line is a flat line as a guide to
the eye. At 50 K, we observe an exponential decay with a decay
constant 1.38� 0.21 ms. The red line is a fit to the data with the
form a × e−t=T1 þ b. ODMR measurements are performed at
ambient magnetic field.
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(see Supplemental Material Sec. V [12]), a key enabling
capability for the observation of ODMR.
Using OSP measurements, we also observe a new cluster

of transitions near 886 nm that are not evident in absorption
or PLE spectroscopy [Fig. 2(c), right]. This indicates that
these transitions have a weak oscillator strength, but are
strongly spin polarizing.
The number of observed transitions cannot be described

by models utilizing only the orbitals localized on the SiV0

center. Group theoretic considerations describe three triplet
excited configurations for SiV0: 3Eu, 3A1u and 3A2u [43].
Bulk photoluminescence measurements under uniaxial
stress suggest that the 946 nm transition arises from the
3Eu state and the 951 nm transition arises from the 3A2u
state [9]. Only the transition from the 3A1u state has not
been experimentally identified.
The proximity of several of these resonances to the

ionization threshold of SiV0 (∼826 nm [40]) provides a
clue to their nature. We propose that SiV0 can act as a
pseudo-acceptor, forming BE states composed of a hole
weakly bound to a transiently generated SiV− center. BE
states of neutral defects have been observed in SiC [44,45],
Si [46–50], and GaP [51]. One manifestation of BE states is
a progression of peaks that can be described qualitatively as
transitions between hydrogenic states and labeled with

principal quantum numbers, n, and angular momentum
labels (s, p, d, etc.). These progressions are observed in
both PLE and OSP measurements, shown in Fig. 3(a).
A schematic level diagram for the states described here is
depicted in Fig. 3(c). Based on this model, transitions to
“s”-like states are expected to be electric-dipole forbidden,
since both the ground state and BE state are of gerade
symmetry. Indeed, we observe transitions at 886 and
837 nm in OSP, but not in absorption or PLE. The isotopic
shift of the 1s transition suggests that this transition is
phonon assisted in nature (see Supplemental Material
Sec. VII [12]). We fit the observed energies (En) of
the “p”-like transitions to the Rydberg scaling, En ¼
EI − Ey=n2, shown in Fig. 3(b), where EI is the ionization
energy and Ey is the Rydberg energy. We find the fitted
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FIG. 2. Spectroscopy and spin polarization of higher-lying
excited states. (a) Absorption measurements at 5.5 K showing
narrow absorption peaks. The raw data is baseline subtracted to
eliminate contribution from broadband absorption. The orange
curve shows a Lorentzian fit to the data. (b) PLE measurement at
5.5 K with detection at 946 nm showing resonant features that
line up with the observed absorption peaks. (c) Pump-probe OSP
measurement at 5.5 K showing narrow resonances after initial-
ization into ms ¼ 0 (I0, magenta) or ms ¼ 1 (I1, green). The
amplitude of each spectrum Ii represents probe induced pop-
ulation change of sublevel ms ¼ i, with the baseline subtracted.
The blue triangle denotes the wavelength used for ODMR
measurements. The wavelength range from 875 to 880 nm is
not shown.
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ionization energy EI to be in good agreement with photo-
conductivity measurements [40], and the Rydberg energy
to be consistent with an effective-mass description of the
system (see Supplemental Material Sec. VIII A [12]).
The s-like states were excluded from this analysis

because of their vibronic nature and the central-cell correc-
tion expected for these types of states [52]. This expectation
is borne out in density functional theory (DFT) calculations
(see Fig. S20 and Supplemental Material Sec. IX G [12]),
where the calculated 1s–2s energy difference of 57 meV
is in better agreement with experimental measurements
(86 meV) than the > 250 meV difference expected from a
hydrogenic model without a central cell correction. The
calculated energy difference between the 2s and 2p states is
also consistent with experimental observations [Fig. 3(a)].
The central cell correction arises because the BE states are
effectively excluded from occupying the 6 carbon atoms
adjacent to the SiV− center, increasing the effective Bohr
radius and decreasing the effective Rydberg energy. This
effect is less pronounced for p-like states because they have
radial nodes at the SiV− center.
Within each labeled manifold in Fig. 3(a), significant

structure is observed. This likely arises from a combination
of spin-orbit structure in the valence band, crystal-field
interactions from the presence of the symmetry-lowering
SiV0 defect, and coupling between the bound hole and
SiV−. We note that the bulk inhomogeneous linewidth
likely obscures the full multiplicity of these transitions.
Transitions above the n ¼ 3 level are not clearly observ-

able in the experimental data. We believe this is a combi-
nation of the oscillator strength scaling (n−3), proximity to
the ionization threshold, and competition with other
nonradiative, non-spin-polarizing relaxation pathways.
With this model for the nature of the transitions, we now

turn to the details of the spin polarization and ODMR
contrast. The magnitude of the ODMR signal depends
sensitively on the excitation wavelength, and we observe
resonant features that match the linewidths observed in
absorption, PLE, and OSP measurements for the n ¼ 2 and
n ¼ 3 BE transitions [Fig. 4(a), upper panel]. This is in
stark contrast to ODMR in the NV center, which shows
significant ODMR contrast for off-resonant excitation due
to its spin dependent intersystem crossing. This indicates
that the mechanism for ODMR relies on selective excitation
of these transitions, which can arise from both the resonant
nature of OSP and spin-selective optical pumping leading
to population shelving into a “dark” spin state.
Furthermore, we observe that the ODMR signal can be

both positive and negative. Optical transitions with non-
unity cyclicity lead to population of ground states (e.g.,
otherms levels here) that are not addressed by the spectrally
narrow excitation [Fig. 4(b)]. This process has no prefer-
ential direction of spin-polarization (addressing different
optical transitions may result in net polarization in either
ms ¼ 0 or ms ¼ �1), but should result in positive contrast

(brighter emission) under resonant microwave driving, as
population is restored to the state being addressed by the
optical excitation.
Another possible mechanism involves spin-dependent

shelving of population in the excited state into a metastable
state, which then decays back to the ground state [Fig. 4(c)].
This mechanism is observed in the NV center under off-
resonant excitation at room temperature. Here, the excitation
addresses all spin sublevels in the ground state, and the
different branching ratios in the excited state for different
spin projections result in a spin polarization direction
independent of excitation wavelength [53]. The sign of
the ODMR contrast, however, has no such general restric-
tion, and should depend on the specific details of the excited
state manifold.
We compare the OSP and the ODMR contrast for the

n ¼ 2 and n ¼ 3 BE transitions in Fig. 4(a). Spin polari-
zation both into and out of the ms ¼ 0 state is observed,
depending on the excitation wavelength. This suggests that
optical pumping plays a role in the excitation cycle of these
transitions. The ODMR contrast data, however, reveals that
this is not a complete description. Although the n ¼ 3 data
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shows primarily positive contrast (brighter emission), the
n ¼ 2 data shows clear negative contrast for some excita-
tion wavelengths. This suggests that decay from the excited
state into a different manifold of states is involved.
In conclusion, we report the first realization of ODMR in

SiV0 centers in diamond. We demonstrate coherent control
of an ensemble of SiV0 spins at low magnetic field and
measure T1 much longer than 30 ms and T2 of 55.5 μs at
6 K. ODMR is enabled by newly discovered higher-lying
excited states of SiV0, which allow for efficient optical spin
polarization. We propose that these transitions arise from BE
states, and we provide DFT calculations for the ionization
threshold, central cell correction, and energy splitting
between different states that are consistent with experimental
observations. On-going work includes single center ODMR
measurements, as well as investigating the microscopic
mechanism for ODMR via BE states. Our measurements
indicate that ODMR cannot arise solely from spin-dependent
shelving of population or resonant optical pumping into a
dark state, and it is likely that a combination of processes
give rise to the observed features.
Optical spin polarization via these BE states enables a

powerful method of spin initialization and readout for SiV0

centers in diamond. In particular, their resonant nature
allows for the use of much lower excitation powers, which
circumvents optically induced noise from the bath [54].
More broadly, this scheme can potentially be deployed in
other emerging defect systems, such as other neutral group
IV vacancy centers in diamond [55,56] and neutral diva-
cancy centers in SiC [57].
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