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Optical activity from chiral metamaterials is both fundamental in electrodynamics and useful for
polarization control applications. It is normally expected that due to infinitesimally small thickness, two-
dimensional (2D) planar metamaterials cannot introduce large optical rotations. Here, we present a new
mechanism to achieve strong optical rotation up to 90° by evoking phase transition in the 2D metamaterials
through tuning coupling strength between meta-atoms. We analytically elucidate such phenomenon by
developing a model of phase-transition coupled-oscillator array. And we further corroborate our ideas with
both numerical simulations and experiments. Our findings would pave a new way for applying the concept
of phase transition in photonics for designing novel optical devices for strong polarization controls and
other novel applications.
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Chirality is a fundamental concept for the fact that it
relates to the broken mirror symmetry and it has important
implications in many areas of science [1–3]. Centuries ago,
Arago [4] and Pasteur [5] successfully discovered a
connection between the chirality and optical activity effect
which causes rotation of light polarization azimuth while
passing through the chiral media. Since then the chiro-
optical interactions have attracted tremendous research
interest in areas such as polarization control [6,7], nonlinear
frequency conversion [8], chiro-optical spectroscopy
[9,10], photonic topological insulators [11,12], and so
on. However, the chiro-optical interactions are very weak
in natural materials, thus how to enhance such response has
become a research hot spot [13,14].
Recently, the emergence of metamaterials has provided

a promising framework to achieve the significant chiro-
optical response from subwavelength scales [15–17].
Mimicking the inherent three-dimensional (3D) feature
of natural molecules, strong optical activity with optical
rotation (ϕ) as high as 90° was achieved from 3D
metamaterials [18–22] making of such as plasmonic
helix [23–26], gyroid [27,28], and multilayered twisted
nanostructures [1,29–33] et al. However, the 3D fabri-
cation is highly challenging, particularly for optical
metamaterials [34]. On the other hand, single layered
metamaterials with subwavelength thickness are much
easier to fabricate. Nevertheless, because of the infini-
tesimally short interaction length of light, they are
generally considered to show weak optical rotation,
and ϕ of only several degrees were normally observed
for a long period of time [35–37]. In order to get stronger
ϕ from the 2D metamaterials, dominant strategies

adopted before were to optimize the individual meta-
atom designs or evoke extrinsic chirality by oblique
incidence [38–43]. Following such approaches, the opti-
cal chiral responses from individual meta-atoms could be
boosted efficiently, but the ϕ still did not exceed 45° to the
best of our knowledge [44–46].
A new mechanism to further increase the ϕ from the 2D

metamaterials, preferably up to 90°, is needed. Such an
effect holds primary potential for realizing polarization
components with nanoscale dimensions, which is highly
needed in various modern applications, such as microscopy,
spectroscopy, displays, and telecommunication, etc. Here,
we demonstrate a novel solution based on a concept of
“phase transition.” The phase transition is ubiquitous in
nature and shows great importance in many branches of
science including physics, chemistry, biology, and even
sociology [47]. A distinct feature of the phase transition is
that a tiny variation in control parameters near transition
point would result in qualitatively different properties of the
system. Thus, the phase transition provides a fascinating
ability to achieve exotic properties from materials or
systems by transforming them from one phase to another.
For example, in electronics, various topological phase
transitions have been observed in low temperature by
imposing strong external magnetic field or spin-orbit
coupling, which enable such as integer quantum Hall
effect, fractional quantum Hall effect or topological insula-
tors [48]. The phase transitions have been observed in
photonic systems as well. Examples include abrupt
increases in phase retardation of transmission from the
metamaterials [49–51], changes between topological trivial
and nontrivial states in photonic crystals [52], transition
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from the photonic crystals to the metamaterials [53], and
observation of PT-symmetry phase transition around excep-
tional points in nanostructures [54], and so on.
In this Letter, we demonstrate the phase transition in the

chiral metamaterials and the resulting abrupt increase in the
optical activity. We would show that when inter-meta-atom
couplings are reduced below a certain threshold, the
metamaterials would enter a new phase, in which the
90° polarization rotation is achieved. “L”-shaped chiral
metamaterials are used in our work. And a theoretical
model based on a coupled-oscillator array, considering both
the intra- and inter-meta-atom interactions, was developed
to analytically elucidate such phase transition behaviors of
the metamaterials. Furthermore, our ideas are corroborated
by both numerical simulations and experimental results.
Our results could find applications in flexible design of the
ultracompact chiral optical devices for various applications.
The “L”-shaped meta-atoms, consisting of two dissimilar

arms, on its own show chiral symmetry and would
introduce the polarization azimuth rotation to incident
light, as indicated in Fig. 1(a). The optical responses of
the “L”-shaped meta-atoms could be intuitively understood
based on a Born-Kuhn model [55–58], which consists of an
array of coupled charged oscillators, as shown in Fig. 1(b).

The u and v oscillators represent the two arms of the “L”
meta-atoms, and they are constrained to move only along x
or y axes, respectively. The resonant frequencies (ωu, ωv)
and damping constants (γu, γv) of the two oscillators are
different, respectively. Furthermore, the two oscillators are
bounded to each other by a third spring with coupling
constant ξ. Such oscillator system is chiral in symmetry,
because it does not coincide with its mirror image. When
x-polarized light (Exe−iωt) strikes the meta-atoms, the u
oscillator starts to oscillate, and the v oscillator is forced to
move via their mutual coupling ξ. The oscillating u and v
oscillators act as secondary sources and emit electro-
magnetic waves polarized along x and y directions,
respectively. This consequently results in output polariza-
tion azimuth different from the x direction, i.e., polarization
rotation happens. Furthermore, when the oscillators are
arrayed, they are mutually coupled via their in-plane
electromagnetic radiation. Considering the transverse
nature of the electromagnetic waves, the nth u (or v)
oscillator would only be influenced by the emission from
the u (or v) oscillators of the neighbors (m), which we
describe here using a coupling coefficient Γu;m (or Γv;m).
Thus, the displacements Un and Vn in the nth meta-atom
could be elucidated by

(a)

(c)

(b)

(d) (e)

FIG. 1. Schematics of chiral metamaterial and phase-transition coupled-oscillator model. (a) Illustration of optical activity from the
metamaterial array. Polarization rotation angle ϕ is positive for clockwise rotation when observed against the propagation direction. The
inset shows SEM image of a single meta-atom with P ¼ 300 nm. (b) Each meta-atom is represented by a dot, which consists of a
charged coupled u- and v-oscillator pair with charges (eu, ev), masses (mu, mv), eigenfrequencies (ωu, ωv), and damping constants (γu,
γv), respectively. They are mutually coupled by a third spring ξ. The response of any meta-atom is affected by its neighbors, which are
denoted by Γu and Γv (corresponding to couplings between the u-u and v-v oscillators, respectively). (c) Phase diagram of the coupled-
oscillator array as functions of Γv and ω. ϕ values are normalized within ð−90°;þ90°�. Two phases are labeled as I and II, depending on
whether or not ϕ could achieve 90°. (d) Optical frequency ω dependence of ϕ, which achieves 90° for Γv ≤ Γc. (e) Maximum achievable
jϕjmax is defined as an order parameter of the system, and its dependence on Γv shows an abrupt change at Γc, demonstrating the
occurrence of the phase transition. The parameters for plotting (c)–(e) are ωv ¼ 0.4 eV, γv ¼ 0.05 eV, ξ ¼ 0.3 eV2 (refer to
Supplemental Material [59] for details).
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Ün þ γu _Un þ ω2
uUn þ ξVn þ

X

m

Γu;mUm ¼ −
eu
mu

Exe−iωt;

V̈n þ γv _Vn þ ω2
vVn þ ξUn þ

X

m

Γv;mVm ¼ 0: ð1Þ

Considering the periodic boundary condition between
the meta-atoms and the normal light incidence, the

oscillator displacements in each unit cell are identical.
Thus, we could rewrite as

P
m Γu;mUm ¼ ΓuUn andP

m Γv;mVm ¼ ΓvVn, where
P

m Γu;m ¼ Γu andP
m Γv;m ¼ Γv denote the equivalent total interactions from

all the neighbors to the nth one. Hence the displacements
and their mutual phase difference could be yielded by
solving above linear differential equations as

Un ¼
eu
mu

Exðω2 þ iγvω − ω2
v − ΓvÞ

ðω2 þ iγuω − ω2
u − ΓuÞðω2 þ iγvω − ω2

v − ΓvÞ − ξ2
e−iωt;

Vn ¼
eu
mu

Exξ

ðω2 þ iγuω − ω2
u − ΓuÞðω2 þ iγvω − ω2

v − ΓvÞ − ξ2
e−iωt;

δ ¼ arctan

�
−γvω

ω2 − ω2
v − Γv

�
: ð2Þ

The amplitude ratio (jVnj=jUnj) together with δ determine
the polarization azimuth of the radiated fields from the
oscillator array:

ϕ ¼ 1

2
arctan

�
2ðjVnj=jUnjÞ cos δ
1 − ðjVnj=jUnjÞ2

�
: ð3Þ

In this work, the 90° rotation of the x-polarized incidence
leads to the output polarization along the y direction. This
demands δ ¼ �π=2 and jVnj > jUnj according to the Jones
calculus. The first condition requires the resonant oscil-
lation of v to make it lag behind the u actuation by π=2.
This is satisfied mathematically by zeroing the denominator
in δ [Eq. (2)], implying a resonance shift of v to ωc ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
v þ Γv

p
as a result of inter-meta-atom coupling. Further-

more, the second condition, which asks for the stronger
jVnj than its driving source jUnj, can only be fulfilled in the
chiral system showing different v and u parameters.
Meanwhile, the ξ needs to be larger than γv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
v þ Γv

p

to generate a sufficient driving force from u to v. For a
given group of (ωu, γu, ωv, γv), the response of the system
is dependent on the Γv. Figure 1(c) presents the phase
diagram of the ϕ as functions of Γv and ω. The value of ϕ is
normalized to the domain of ð−90°;þ90°�. It is clear that ϕ
could achieve 90° when Γv is smaller than a threshold value
of Γc ¼ ξ2=γ2v − ω2

v and at the ωc. The relationship between
ϕ and ω for different Γv values is given in Fig. 1(d). It is
shown that the ϕ cannot exceed 45° for Γv > Γc, but
achieves 90° when Γv ≤ Γc. We define the maximum
achievable optical rotation jϕjmax from the array as an
order parameter, and its dependence on the Γv is shown in
Fig. 1(e). Indeed jϕjmax shows a phase transition and
changes from 45° to 90° abruptly at Γc (Supplemental
Material [59] gives detailed explanation). Consequently,
two distinct phases (“I” and “II”) can be defined depending
on whether jϕjmax achieves 90° or not. Considering that the

ϕ is related to the Un and Vn [Eq. (3)], which are
proportional to the first-order derivative of total energy
(the sum of potential and kinetic energies) of the oscillator
array, the phase transition here could be classified as the
first-order transition, following the Ehrenfest classification
scheme [65].
The “L”-shaped metamaterial samples were fabricated

using focused ion beam milling through a 100 nm thick
gold film deposited on a fused quartz substrate. The
meta-atoms are periodically arranged in a square lattice,
whose period P varies for different metamaterial arrays.
The typical SEM image of a single meta-atom with
P ¼ 300 nm is shown in Fig. 1(a). The optical rotations
of the metamaterials were studied using a finite-element
method (COMSOL). The optical constant of gold is
described by data from Ref. [66]. The refractive index
of the substrate was set as 1.45. Periodic conditions were
applied on the boundaries between meta-atoms. Inside
the geometry, continuity conditions are imposed every-
where, except that scattering boundary conditions were
applied to the boundaries where the wave is entering and
outgoing the structure. Figure 2(a) presents the simulated
spectra of the ϕ for metamaterials with P ranging from
410 to 450 nm. We summarize the jϕjmax for various P in
Fig. 2(b). Agreeing with the prediction from the coupled-
oscillator model jϕjmax increases for larger P, which
corresponds to the decreased Γ. And jϕjmax suffers the
abrupt transition from 45° to 90° when P reaches a
critical value of 416 nm, showing a similar feature
as Fig. 1(d). These consistences validate our proposed
phase transition coupled-oscillator model. Furthermore,
we found that when P is larger than 628 nm, the
metamaterials return to phase II again, which could be
attributed to the decreased ξ in the meta-atom as the
wavelength increases.
In the experiment, a supercontinuum laser (6W-SC-Pro,

YSL Photonics) was adopted as a broadband light source,
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whose output light was polarized along the x direction
using a Glan-Taylor (GT) calcite polarizer. We used a ×10
objective (0.3 NA) for illumination and another ×100
objective (0.9 NA) for collection. Transmission spectra
of the metamaterials referenced to the naked fused
quartz substrate were characterized by a spectrometer.
Experimental and simulated results are given in solid
and dashed lines in Fig. 3(a), respectively. As P increases
from 300 to 500 nm in a step of 50 nm, the spectral
resonances suffer redshift as indicated by the red dashed
line, and the transmittance decreases slightly due to the
lower aperture ratio of the meta-atoms (shown by SEM
images on the right). The optical rotation spectra of the
metamaterials were measured using a homebuilt polari-
meter, consisting of a rotating achromatic quarter-wave
plate (WP), GT polarizer, and a fiber coupled spectrometer.
The experimental and simulated results are shown by solid
and dashed lines in Fig. 3(b), respectively (circular polari-
zation extinction ratio spectra are given in Supplemental
Material [59]). In shadowed regimes, the metamaterial
periods P are larger than the wavelengths in the substrate,
thus nonzero-order optical diffraction happens. We will not
discuss the properties in these spectral regions, because
interference between the diffraction orders complicates the

polarization analysis, and deteriorates the real application
convenience. For wavelength range beyond the shadows,
only zero-order transmission occurs. It could be seen that
when P increases, the spectra shift down in frequency, and
the ϕ increases. The ϕ are less than 45° for P ¼ 300 to
400 nm, which are in the phase II indicated in Fig. 2(b). For
the P ¼ 450 and 500 nm, which are much larger than the
threshold of 416 nm, ϕ achieve 90°, and the metamaterials
transform into the phase I. Such phase transition behavior is
intuitively shown in Fig. 3(c). The experimental results
agree reasonably well with the simulated ones in Fig. 3.
And discrepancies between them can be mainly attributed
to differences between the simulation models and the real

(a)

(c)

(b)

FIG. 3. Experimental characterization of metamaterials’ per-
formance. (a) Transmission spectra for metamaterials with P
changes from 300 to 500 nm in a step of 50 nm under x-polarized
incident light. Experimental and simulated results are given in
solid and dashed lines, respectively. The spectra are shifted
vertically for clarity of presentation. Scale bar of 45% is shown in
bottom-left corner. Gray dashed lines give zero transmission level
for each curve. (b) Experimental (solid lines) and simulated
(dashed lines) ϕ for metamaterials. Vertical scales are shown in
bottom-left corner. Gray dashed lines show the zero level of each
ϕ curve. The experimental and simulated results show reasonable
agreement except in the shadowed ranges, where optical dif-
fraction happens. The SEM images of unit cells are shown on
the right. (c) Comparison between the experimental and the
simulated jϕjmax as a function of P. Empty triangles are the
experimental data, and solid lines are the simulated result
replotted from Fig. 2(b). The jϕjmax achieves 90° for P of 450
and 500 nm, which are much larger than the transition threshold
of 416 nm.

(a)

(b)

FIG. 2. Simulated optical rotation spectra. (a) ϕ spectra for
metamaterial arrays with various periods. For structures with P
larger than 416 nm, the ϕ achieves 90°. The curves are shifted
vertically for clarity of presentation. Vertical scale is shown in
bottom-left corner. Gray dashed lines show zero level of each ϕ
curve. (b) The jϕjmax as a function of P, which shows a
discontinuous transition at 416 nm. The empty circles are the
simulated data, and solid lines are guides for the eye.
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samples, for example side walls of L-shaped holes were
assumed to be vertical in the simulations rather than
inclined as the real sample.
In conclusion, we have reported a phase-transition

optical activity from the single layer chiral metamaterials.
We developed a phase-transition coupled-oscillator array
model to elucidate the physical behaviors of the meta-
materials, in which both the intra- and inter-meta-atom
interactions are taken into consideration. The couplings
between the meta-atoms, which can be tuned easily by
changing the P of metamaterials, are proved to play
important roles in inducing the phase transition of the
metamaterials and also in influencing the ϕ level. By
reducing the inter-meta-atom coupling below the critical
strength (equivalent to increasing the P above a threshold
value), the maximum optical rotation from the single layer
metamaterial can be abruptly switched from below 45° to
90°. Our findings, from a fundamental point of view,
provide a new angle in understanding and boosting the
chiro-optical interactions, which benefit improving the
sensitivity of chiro-optical spectroscopy for determining
the purity of chemicals, and can be applied in manufac-
turing ultracompact chiral polarization components for
displays to telecommunications et al. Furthermore, it is
expected that our results could open a new door for a
variety of researches and applications in the field of phase-
transition photonics.
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