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We show that when the time reversal symmetry is broken in a multicomponent superconducting
condensate without inversion symmetry the resulting Bogoliubov quasiparticles generically exhibit mini-
Bogoliubov-Fermi (BF) surfaces, for small superconducting order parameter. The absence of inversion
symmetry makes the BF surfaces stable with respect to weak perturbations. With sufficient increase of the
order parameter, however, the Bogoliubov-Fermi surface may disappear through a Lifshitz transition, and
the spectrum this way become fully gapped. Our demonstration is based on the computation of the effective
Hamiltonian for the bands near the normal Fermi surface by the integration over high-energy states.
Exceptions to the rule, and experimental consequences are briefly discussed.
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The appearance of the gap in the quasiparticle spectrum
of an s-wave superconductor has been one of the defining
features of the superconducting state of matter since
the conception of the theory of Bardeen, Cooper, and
Schrieffer [1]. Many unconventional superconductors of
today do not feature a full gap, but still reduce the density of
quasiparticle states near the Fermi energy by leaving only
lines or points in the momentum space where the gap
vanishes [2]. These, however, are not the only possibilities
[3–5], and Fermi surfaces of Bogoliubov excitations in the
superconducting state are possible as well [6–8]. These
arise in superconductors with more than one band partici-
pating in pairing, and when the condensate breaks time
reversal (TR) symmetry while preserving inversion, which
is present in both normal and superconducting phases. The
presence of inversion symmetry has been deemed crucial
for the appearance and particularly the stability of a
Boguliubov-Fermi (BF) surface, which then comes out
topologically protected. The existence of a surface of
gapless quasiparticle excitations leads to a finite residual
density of states, and has many consequences for the low
temperature properties of the superconducting phase. It
should be detectable in the temperature dependence of the
penetration depth, heat conductivity, and heat capacity at
low temperatures, for example [9].
It has been recently found in an example of TR-

symmetry-breaking superconducting ground state in a
topologically nontrivial (Rarita-Schwinger-Weyl) four-
band system that the BF surfaces can form despite the
complete lack of inversion symmetry in the superconduct-
ing states [10]. Other instances of the same phenomenon
have also been considered [11,12]. The generality of the
emergence of the BF surfaces in materials with no inversion
symmetry has not been clear, however, and its possible
relevance to the large number of known noncentrosym-
metric superconductors [13] is an open issue.

In this Letter we show that in a multiband system without
inversion symmetry spontaneous breaking of TR in the
superconducting state generically leads to the formation of
a BF surface, at least right below the critical temperature, if
the superconducting phase transition is continuous. With an
increase of the order parameter the BF surface may
eventually shrink to a point and then be replaced by a
gap. The latter phenomenon occurs when the supercon-
ducting gap becomes comparable to the energy gap
between the band at and the bands away from the normal
Fermi surface. Central to our demonstration is the deriva-
tion of the effective low-energy Hamiltonian, which may be
thought of as a result of integrating out the energy bands
away from the Fermi energy. It provides more than just a
useful approximate picture of the spectrum of Bogoliubov
quasiparticles, as we show that the location of the zero
modes of the effective Hamiltonian in the momentum space
coincides with the location of the BF surface of the original
Bogoliubov–de Gennes (BdG) quasiparticle Hamiltonian
of arbitrary size. The absence (or presence) of the TR
symmetry in the superconducting state governs the algebra
behind the computation of the effective Hamiltonian, and
dictates the low-energy spectrum. The breaking of the TR
symmetry leads to mini BF surfaces, while the preservation
of the TR symmetry leads generically to gapless lines of
Bogoliubov quasiparticles, similarly as in inversion-sym-
metric systems [14,15].
Boguliubov–de Gennes Hamiltonian.—Consider the

quantum-mechanical action for the Bogoliubov quasipar-
ticles in the superconducting state:

S ¼ kBT
X
ωn;p

Ψ†ðωn;pÞ½−iωn þHBdGðpÞ�Ψðωn;pÞ; ð1Þ

where the Nambu spinor is Ψðωn;pÞ ¼ ½ψðωn;pÞ;
T ψðωn;pÞ�T, p is the momentum, ωn ¼ ð2nþ 1ÞπkBT
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is the Matsubara frequency, and T is the temperature. ψ ¼
ðψ1;…;ψNÞ is an N-component Grassmann number
describing N energy bands, and its time reversed counter-
part is T ψðωn;pÞ ¼ Uψ�ð−ωn;−pÞ, where T is the
antiunitary time-reversal operator, and U its unitary part.
This way the BdG Hamiltonian becomes

HBdGðpÞ ¼
�
HðpÞ − μ Γ

Γ† −½HðpÞ − μ�

�
: ð2Þ

We assume that the N-dimensional Hamiltonian HðpÞ is
only TR symmetric, so thatU†HðpÞU¼H�ð−pÞ. Recalling
that it is also Hermitian and H�ðpÞ ¼ HTðpÞ, the action in
Eq. (1) would assume its textbook form.
For simplicity we also assume that the N-dimensional

matrix Γ which denotes the intra- and interband Cooper
pairing is constant, so that the pairing term is local in real
space, ∼Ψ†ðx; τÞΓ½T Ψðx; τÞ�. The matrix Γ can then be
expanded as Γ ¼ P

a ΔaMa, with index a labeling the
complex order parameter components, Δa ¼ Δ1a þ iΔ2a.
Ma are Hermitian matrices that form a basis in the relevant
order parameter space, and need only to conform to the
fermionic statistics of the fields. If ðT Þ2 ¼ −1, fermionic
statistics dictates that all Ma are even under TR, so s-wave
and tensorial d-wave order parameters are among the
obvious examples [15,16]. In the case of pairing of the
(effective) integer-spin fermions for which ðT Þ2 ¼ þ1,
the matrices Ma would be TR odd, like three components
of a p wave [12]. Our method will work for both cases, and
can also be easily generalized to momentum-dependent
pairing.
The BdG Hamiltonian in Eq. (2) can thus also be

written as

HBdG ¼ σ3 ⊗ ½HðpÞ − μ�
þ
X
a

ðΔ1aσ1 ⊗ Ma − Δ2aσ2 ⊗ MaÞ; ð3Þ

where σα, α ¼ 1, 2, 3 are the usual Pauli matrices. The
phase common to all Δa is assumed to have been gauged
away. If Ma is TR even, HBdG is even under the time-
reversal operator 12×2 ⊗ T only when all Δ2a ¼ 0. If some
Δ2a ≠ 0, and, consequently, Γ ≠ Γ†, TR is broken in the
superconducting phase. For completeness, let us also
consider the case when T 2 ¼ þ1 when Ma are odd:
HBdG will then be even under 12×2 ⊗ T when all
Δ1a ¼ 0. One can then still gauge away the overall
phase of π=2 to have the pairing matrix Γ Hermitian.
For either type of the TR symmetry, non-Hermiticity of the
pairing matrix Γ is thus tantamount to breaking of the TR
symmetry in the superconducting state.
Effective Hamiltonian.—Let us define the eigenvalues

(bands) and the eigenstates of the normal state Hamiltonian
HðpÞ, as EiðpÞ and ϕiðpÞ, i ¼ 1;…N. We consider a

momentum p at the normal state’s Fermi surface at which
there is only one eigenvalue equal to the chemical potential
μ, since the normal Fermi surface is in general non-
degenerate, except possibly at special points. There could
be more than one connected Fermi surface, but without
inversion there is no forced double degeneracy of the Fermi
surface at all momenta p; the TR alone implies only that if a
momentum p belongs to the Fermi surface, the opposite
momentum −p does as well. We may call the eigenstate
with its energy arbitrarily close to the Fermi surface ϕ1ðpÞ
“light,” and the remaining N − 1 eigenstates “heavy.” This
separation may depend on the Fermi surface point under
consideration.
The spectrum of the Bogoliubov quasiparticles at a

momentum p is given by the solution of the equation
for the real frequency ω

det½HBdGðpÞ − ω� ¼ 0: ð4Þ

With the separation into light and heavy states at a given
momentum near the normal Fermi surface, one can write the
BdG Hamiltonian in the basis fðϕiðpÞ; 0ÞT; ð0;ϕiðpÞÞTg,
i ¼ 1;…N as

HBdGðpÞ ¼
� HlðpÞ HlhðpÞ
H†

lhðpÞ HhðpÞ

�
: ð5Þ

The block for the light particle and hole states HlðpÞ is
a two-dimensional matrix. The heavy modes are described
by the (2N − 2)-dimensional matrix HhðpÞ, and the cou-
pling between the light and heavy states HlhðpÞ is a
2×ð2N−2Þ matrix. The above determinant can now be
rewritten as

det½HBdGðpÞ − ω� ¼ det½HhðpÞ − ω� detLefðω;pÞ; ð6Þ

where the effective LagrangianLef is the Schur complement
[17] of the block matrix for the heavy modes:

Lefðω;pÞ¼HlðpÞ−ω−HlhðpÞðHhðpÞ−ωÞ−1H†
lhðpÞ: ð7Þ

The first factor in Eq. (6)may be understood as the fermionic
partition function at a fixed frequency for the heavy modes,
and the second factor is therefore the residual partition
function (at fixed frequency) for the light modes, which are
modified by the integration over the heavy modes [18].
Lefðω;pÞ is defined whenever the heavy block is invertible,
which is the case if jωj < jEiðpÞ − μj for i ≠ 1. Under
this condition the eigenvalue equation in Eq. (4) reduces
to detLefðω;pÞ ¼ 0. Although Lefðω;pÞ is only a two-
dimensionalmatrix, its computation involves an inversion of
the (2N − 2)-dimensional matrix, so for a general ω there is
no obvious gain. ω ¼ 0, however, is a solution only when
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detHefðpÞ ¼ 0; ð8Þ

with HefðpÞ ¼ Lefð0;pÞ, and which may be called the
effective Hamiltonian [19]. We emphasize that only the
solutions for zero modes of HefðpÞ are exactly the same as
those for the original HBdGðpÞ; the rest of their spectra
differs. This is, however, all that is needed to understand the
emergence of the BF surface, as we show next.
Bogoliubov-Fermi surface.—The effective Hamiltonian

is two dimensional and thus may be expanded in the Pauli
basis

Hef ¼
X3
α¼0

fαðpÞσα ð9Þ

with σ0 ¼ 12×2. Equation (8) can now be written as

f20ðpÞ −
X3
i¼1

f2i ðpÞ ¼ 0: ð10Þ

We will show that if in some direction in the momentum
space the last equation is solved by two different magni-
tudes p ¼ p1 and p ¼ p2, the emergence of a BF surface
follows from continuity: varying the direction smoothly
changes the solutions p1 and p2, until they merge and that
way close a surface.
In the normal phase, when Δa ≡ 0 all the states are

decoupled, and there is of course the normal Fermi surface
at which f3ðpÞ ¼ E1ðpÞ − μ changes sign, and fβðpÞ≡ 0,
for β ¼ 0, 1, 2 [see Fig. 1(a)].
We will find that in the TR-symmetry-breaking super-

conducting phase f0¼OðΔ2Þ, f3ðpÞ−½E1ðpÞ−μ�¼OðΔ2Þ,
whereas f1;2 ¼ OðΔÞ þOðΔ3Þ. Δ2 ¼ P

a jΔaj2 is an
overall size of the order parameter. A finite value of f0
introduces a shift of the order OðΔ2Þ in the energy of the
light particle and hole states due to the interband pairing,

f3ðpÞ − ½E1ðpÞ − μ� introduces a shift in the momentum
direction also of the order OðΔ2Þ, and f1;2 open a gap
between the light particle and light hole state of the order
OðΔÞ þOðΔ3Þ. Whenever the leading OðΔÞ contributions
to f1;2 vanish somewhere on the normal Fermi surface, i.e.,
the intraband coupling between the light particle and hole
state vanishes, there will be two different points at p1 and
p2 where the energy of the quasiparticles is equal to the
chemical potential and the BF surface will be nucleated in
the superconducting phase provided Δ is small enough.
The vanishing of the leading order contribution to f1;2
yields two conditions on two polar angles, so the BF
surfaces in form of an inflated point node will in general
emerge around particular points near the normal Fermi
surface. If the two conditions on the polar angles happen to
be the same, the form of the BF surface will be an inflated
line node. The principle behind the emergence of the BF
surface is depicted in Fig. 1.
When the TR is preserved in the superconducting state,

on the other hand, fiðpÞ≡ 0 for i ¼ 0, 2; there is no shift in
the energy of the light particle and hole states, but only a
shift in the momentum. This implies p1 ¼ p2. Zero-energy
solutions are then given by fiðpÞ ¼ 0 for i ¼ 1, 3, which
provides two conditions on three variables, and leads to a
line of gapless points [20].
Iterative procedure.—To see how this comes about let us

write the BdG Hamiltonian in Eq. (5) once again as

Hð0Þ
BdG;N ¼

0
BBBBBB@

Hð0Þ
1;1 Hð0Þ

1;2 … Hð0Þ
1;N

Hð0Þ†
1;2 Hð0Þ

2;2 … Hð0Þ
2;N

..

. ..
. . .

. ..
.

Hð0Þ†
1;N Hð0Þ†

2;N … Hð0Þ
N;N

1
CCCCCCA
; ð11Þ

with the two-dimensional blocks as

(a) (b) (c)

FIG. 1. (a) The energy dispersion of the Bogoliubov quasiparticles in the direction orthogonal to the Fermi surface of the light (red)
and the heavy (blue) particle and hole states. (b) The same in the superconducting state with broken TR symmetry, in the direction
ðθ0;ϕ0Þ where the first order contribution to the gap vanishes. The energy dispersion of the light states is shifted in momentum and
energy by the amountOðΔ2Þ, the light particle and hole states are mixed by the term of the orderOðΔ3Þ, and as a result the energy of the
Bogoliubov quasiparticles vanishes at some p1 and p2. Varying the direction in the momentum space away from ðθ0;ϕ0Þ smoothly
changes the solutions p1 and p2, until they merge and that way close a surface. (c) The energy dispersion of the Bogoliubov
quasiparticles in the superconducting state with preserved TR symmetry, in the direction ðθ0;ϕ0Þ. The energy dispersion of the light
states is only shifted in the momentum direction, which leads to line nodes.

PHYSICAL REVIEW LETTERS 125, 237004 (2020)

237004-3



Hð0Þ
k;m ¼ δk;m½EkðpÞ − μ�σ3

þ
X
a

ðϕ†
kMaϕmÞðΔ1aσ1 − Δ2aσ2Þ: ð12Þ

Note that the diagonal blocks are Hermitian matrices
whereas the off-diagonal blocks in general are not.
Using the Schur decomposition [17] again,

detHð0Þ
BdG;N ¼ detHð0Þ

N;N detHð1Þ
BdG;N−1; ð13Þ

where Hð1Þ
BdG;N−1 is the Schur complement of the last block

on the diagonal Hð0Þ
N;N ,

Hð0Þ
BdG;N−1−Hð1Þ

BdG;N−1

¼

0
BBBBB@

Hð0Þ
1;N

Hð0Þ
2;N

..

.

Hð0Þ
N−1;N

1
CCCCCA
·ðHð0Þ

N;NÞ−1 ·ðHð0Þ†
1;N ;Hð0Þ†

2;N ;…;Hð0Þ†
N−1;NÞ; ð14Þ

and as a matrix it consists of ðN − 1Þ × ðN − 1Þ two-
dimensional blocks. One can think of it as the effective
Hamiltonian for the N − 1 bands after only the Nth band
has been integrated out. This step can be now iterated so
that

detHð0Þ
BdG;N

¼detHð0Þ
N;NdetH

ð1Þ
N−1;N−1detH

ð2Þ
N−2;N−2…detHðN−1Þ

1;1 ; ð15Þ

where each matrix HðkÞ
N−k;N−k is a two-dimensional heavy

diagonal block of the effective BdG Hamiltonian at the
(intermediate) kth stage of the iteration, and the requisite
effective Hamiltonian Hef for the light states is simply the

final HðN−1Þ
1;1 . This way no inversion of anything larger than

a two-dimensional matrix is ever required, but the price is
the tracking of the evolution of the parameters appearing in
the effective Hamiltonians of the reduced size.
Results.—What is the result of this procedure? If the TR

is preserved and Ma is TR even one can set Δ2a ≡ 0.
Equation (14) implies that at each iteration one multiplies
three matrices that are linear combinations of only σ1 and
σ3. Such a multiplication can yield only another linear
combination of the same σ1 and σ3, since TrðσμσiσjσkÞ≡ 0

if i, j, k ¼ 1, 3 and μ ¼ 0, 2. All the blocks HðkÞ
N−k;N−k are

thus real and traceless, and therefore in the final effective
Hamiltonian fαðpÞ≡ 0 for α ¼ 0, 2 at every momentum p
as well. The solution of two equations fβðpÞ ¼ 0, for
β ¼ 1, 3 will then, in general, lead to lines of gapless points
in the momentum space.

When TR is broken in the superconductor, already after
the first iteration all the blocks in the Hð1Þ

BdG;N−1 become
unrestricted general 2 × 2matrices, and remain so at further
iterations. So fαðpÞ ≠ 0 for α ¼ 0, 1, 2, 3. The BF surface
may result, however, when the superconducting order is
sufficiently weak. Equation (7) implies that the correction
to Hl in the Hef is quadratic in Hlh. Since Hlh ∼ Δ, the
leading order correction is of second order in the super-
conducting order parameters. To this order one may
therefore neglect all off-diagonal, ∼Δ, matrix elements
in Hh in Eq. (7), and in this way arrive at the familiar
expression from the second-order perturbation theory. In
the notation of Eq. (11) then

Hef ¼ Hð0Þ
1;1 −

XN
k¼2

Hð0Þ
1;kðHð0Þ

k;k;Δa¼0Þ−1Hð0Þ†
1;k þOðΔ3Þ: ð16Þ

The crucial observation is that since Hð0Þ
1;k for k ≠ 1 are off-

diagonal [i.e., linear combinations of only σ1 and σ2, as in

Eq. (12)], and Hð0Þ
k;k;Δa¼0 (and therefore its inverse) are

proportional to σ3, the leading order correction in Hef is
diagonal, i.e., a linear combination only of σ3 and unit
matrix. The functions fμ, μ ¼ 1, 2 therefore do not acquire
an OðΔ2Þ correction, and

f1ðpÞ − if2ðpÞ ¼ ϕ†
1ðpÞΓϕ1ðpÞ þOðΔ3Þ: ð17Þ

In contrast, fμ for μ ¼ 0, 3, do. Explicitly, [18]

f3ðpÞ ¼ E1ðpÞ − μ

þ
XN
k¼2

jϕ†
1ðpÞΓϕkðpÞj2 þ jϕ†

1ðpÞΓ†ϕkðpÞj2
2½EkðpÞ − μ� ; ð18Þ

and, most importantly,

f0ðpÞ ¼
XN
k¼2

jϕ†
1ðpÞΓϕkðpÞj2 − jϕ†

1ðpÞΓ†ϕkðpÞj2
2½EkðpÞ − μ� ; ð19Þ

with the next-order terms in the last two equations
being OðΔ4Þ.
At the points on the normal Fermi surface where

ϕ†
1ðpÞΓϕ1ðpÞ ¼ 0; ð20Þ

the off-diagonal elements f1;2 of Hef become OðΔ3Þ and
negligible, so the leading effect of heavy modes is to shift
the energy bands in the momentum and energy directions,
as in Fig. 1. This inevitably leads to two momenta near the
original Fermi momentum at which Hef has zero-energy
eigenstates. The BF surface is then nucleated around that
particular point on the normal Fermi surface by continuity.
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The last equation may not have a solution, in which case
the spectrum will be gapped. One such instance is when
Γ ¼ Δ1M1 þ iΔ2M2, with M1 ¼ 1N×N , i.e., the real part is
the swave. If neither f1ðpÞ nor f2ðpÞ are simple constants,
however, the equation will typically have several solutions,
and the BF surfaces will ensue. An example is provided
by the quasiparticle spectrum of some of the d-wave
superconducting states in the Rarita-Schwinger-Weyl
semimetals [10].
Discussion.—The BF surface once nucleated is fully

stable toweak perturbations. This is because no symmetry is
left in the superconducting state, apart from the translational
symmetry, that could be broken. This is an important
difference from the standard case with inversion, where
inversion symmetry is susceptible to spontaneous breaking
by favorable residual interactions in the superconducting
state [21]. The final result of such interaction-induced
reduction of inversion symmetry would be precisely the
stable BF surface discussed here.
Increasing sufficiently the superconducting order param-

eter would shrink the BF surface to a point, and replace it by
a gap. Such a transition is not accompanied by breaking of
any symmetry, however, and provides an example of a
Lifshitz transition [22]. It occurs atΔ2

c¼ðE2ðpÞ−μÞ2=BðpÞ,
if jE2ðpÞ − μj ≪ jEkðpÞ − μj, for k > 2, for example, with
the numberBðpÞ ∼ 1 [18]. Such a characteristic energy scale
jE2ðpÞ − μj in noncentrosymmetric superconductors usu-
ally originates from the asymmetric spin-orbit coupling
(ASOC), jE2ðpÞ−μj∼EASOC and typically ðΔ=EASOCÞ2≪1
[13]. Very small such a ratio, on the other hand, is
detrimental for the size of the BF surface, which is
∼Δ2=jE2ðpÞ − μj, forΔ=jE2ðpÞ − μj ≪ 1. A crude estimate
gives the largest BF surface for the ratio Δ ≈ Δc=

ffiffiffi
2

p
[18].

The systems with inversion in both normal and super-
conducting states [6] may be studied in analogy with the
present calculation. The effective Hamiltonian is then four-
dimensional, however, which introduces further subtleties
in the algebra behind its computation. One may, never-
theless, understand the appearance and the stability of the
BF surface in that case without resorting to topology. The
details of this approach will be presented in a separate
publication.
Examples of noncentrosymmetric superconductors with

broken TR are believed to include LaNiC2 [13,23–28],
LaNiGa2 [29], La7Ir3 [30], and Re6Zr [31]. All four
materials are also commonly assumed to be fully gapped,
however. It would be interesting to identify a noncentro-
symmetric material that breaks TR but displays ∼T3

behavior in the specific heat over a range of temperatures,
for example. Instead of extending all the way to zero we
would predict this behavior crossing over to ∼T below
∼T2

c=EASOC, provided that the BF surface survives. Similar
crossovers that would reflect a finite residual density of
states in the superconducting phase should be observable in
the penetration depth and thermal conductivity as well.
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