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We report on transport signatures of hidden quantum Hall stripe (hQHS) phases in high (N > 2) half-
filled Landau levels of AlxGa1−xAs=Al0.24Ga0.76As quantum wells with varying Al mole fraction x < 10−3.
Residing between the conventional stripe phases (lower N) and the isotropic liquid phases (higher N),
where resistivity decreases as 1=N, these hQHS phases exhibit isotropic and N-independent resistivity.
Using the experimental phase diagram, we establish that the stripe phases are more robust than theoretically
predicted, calling for improved theoretical treatment. We also show that, unlike conventional stripe
phases, the hQHS phases do not occur in ultrahigh mobility GaAs quantum wells but are likely to be found
in other systems.

DOI: 10.1103/PhysRevLett.125.236803

Discovery of the integer quantum Hall effect in Si [1]
has paved the way to observations of many exotic phenom-
ena in two-dimensional (2D) electron and hole systems.
Two prime examples are the fractional quantum Hall effect
[2] and quantum Hall stripes (QHSs) [3–7]. While frac-
tional quantum Hall effects have been realized in many
systems, including GaAs [2], Si [8,9], AlAs [10], GaN [11],
graphene [12,13], CdTe [14], ZnO [15], Ge [16], and InAs
[17], exploration of the QHS physics remains limited to
GaAs [18].
Forming due to a peculiar boxlike screened Coulomb

potential, QHSs can be viewed as charge density waves
consisting of stripes with alternating integer filling factors
ν, e.g., ν ¼ 4 and ν ¼ 5 [25]. In experiments, QHSs are
manifested by giant resistivity anisotropies (ρxx ≫ ρyy)
in N ≥ 2 half-filled Landau levels. Appearance of these
anisotropies in macroscopic samples is attributed to a
mysterious symmetry-breaking field [27–30], which nearly
always aligns QHSs along the ŷ≡ h110i crystal axis of
GaAs [31]. While a sufficiently low disorder is necessary
for the QHS formation, the absence of QHSs in systems
beyond GaAs might simply be due to the lack of symmetry-
breaking fields [33]. Indeed, electron bubble phases [3–5,
43–52], which are close relatives of QHSs, have already
been identified in graphene [53].
In this Letter, we report observations of transport

signatures of the recently predicted [54] hidden QHS
(hQHS) phases in a series of AlxGa1−xAs=Al0.24Ga0.76As
quantum wells with x < 10−3. In contrast to the ordinary
QHS phases, the hQHS phases are characterized by
isotropic resistivity (ρxx ¼ ρyy ¼ ρ) that is independent

of ν, unlike the isotropic liquid phases in which ρ ∝ ν−1.
These unique properties make these phases detectable
without symmetry-breaking fields, thereby opening an
avenue to study stripe physics in systems beyond GaAs.
The wide variation of mobilities in our samples allows
us to construct an experimental phase diagram in the
conductivity-filling factor plane. Its comparison to
theoretical predictions [54] yields the electron quantum
lifetimes and the stripe density of states. The latter turns out
to be lower than predicted by the original Hartree–Fock
theory [3,4], calling for further theoretical input. We
confirm this finding by a complementary experiment on
an ultrahigh mobility GaAs quantum well, where we also
show that, in this sample, the hQHS phase yields to the
QHS phase in agreement with the theory.
Before presenting our experimental data, we briefly

summarize the physics behind the hQHS phases [54].
The resistance anisotropies in the ordinary QHS phase
emerge due to different diffusion mechanisms along and
perpendicular to the stripes [55–57]. In this picture, an
electron drifts a distance Ly along the y-oriented stripe edge
in an x-directed internal electric field until it is scattered by
impurities to one of the adjacent stripe edges located at a
distance Lx ¼ Λ=2 ≈

ffiffiffi
2

p
Rc [3,4], where Λ is the stripe

period and Rc is the cyclotron radius. When Ly ≫ Lx, the
diffusion coefficient in the ŷ direction is much larger that in
the x̂ direction, which leads to anisotropic conductivity,
σyy ≫ σxx, and resistivity, ρxx ≫ ρyy. Since Ly ∝ ν−1 and
Lx ∝ ν [57], the anisotropy decreases with ν and eventually
vanishes at some ν ¼ ν1. At larger ν, the drift contribution
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to the diffusion along stripes can be neglected, and Ly,
like Lx, is determined entirely by the impurity scattering.
For isotropic scattering, it is easy to show [58] that Ly ¼ffiffiffi
2

p
Rc which coincides with Lx. As a result, the QHS phase

yields to the hQHS phase in which the resistivity is
isotropic and ν independent (since the stripe density of
states does not vary with ν). The hQHS phase persists
until the stripe structure is destroyed by disorder at ν ¼ ν2
and the ground state becomes an isotropic liquid with
ρxx ¼ ρyy ∝ ν−1, as predicted by Ando and Uemura [59]
and experimentally confirmed by Coleridge, Zawadski, and
Sachrajda (CZS) [60].
For the hQHS phase to exist and be detected, it

should span a sizable range of the filling factors Δν ¼
ν2 −maxfν1; 9=2g ≫ 1. The range Δν depends sensitively
on both transport τ−1 and quantum τ−1q scattering rates,
which control ν1 and ν2, respectively [54]. As we will see,
ultrahigh mobility GaAs quantum wells do not support the
hQHS phase as ν1 ≈ ν2 in these samples. On the other hand,
adding the correct small amount of Al [61] to the GaAs well
greatly expands Δν, as it affects ν1 to a much greater extent
than it does ν2. This happens because Al acts as a short-
range disorder, which contributes equally to transport τ−1

and quantum τ−1q scattering rates, and because τq=τ ≪ 1

at x ¼ 0.
Apart from different x, all our AlxGa1−xAs quantum

wells share an identical heterostructure design [62].
Electrons are supplied by Si doping in narrow GaAs wells
surrounded by narrow AlAs layers and placed at a setback
distance of 75 nm from each side of the 30-nm-wide
AlxGa1−xAs well hosting the 2D electrons. Parameters of
samples A, B, and C such as Al mole fraction x, electron
density ne, mobility μ, and Drude conductivity σ̃0 ¼
hneμ=e in units of e2=h at zero magnetic field (B ¼ 0)
are listed in Table I. The samples are approximately 4 mm
squares with eight indium contacts positioned at the corners
and at the midsides. Longitudinal resistances Rxx and Ryy

were measured in sweeping magnetic fields using a four-
terminal, low-frequency (a few Hz) lock-in technique at a
temperature T ≈ 25 mK at which the resistances are nearly
temperature independent. The current was sent along either
the x̂≡ h11̄0i or ŷ≡ h110i direction using the midside
contacts, and the voltage was measured between contacts
along the edge. To account for anisotropies due to nonideal

geometry, Rxx or Ryy was multiplied by a factor (typically
≲1.1) that was chosen to make Rxx ¼ Ryy in the low field
regime.
In Fig. 1, we present longitudinal resistances Rxx and Ryy

as a function of filling factor ν measured in sample B. At
low half-integer filling factors, ν ¼ 9=2, 11=2, and 13=2,
the data reveal conventional QHS phases, as evidenced by
Rxx > Ryy. At high half-integer filling factors, ν > 25=2,
we identify the CZS phase in which Rxx ≈ Ryy ∝ ν−1

(cf. dash-dotted line). At intermediate half-integer filling
factors, ν ¼ 15=2;…; 23=2, one readily confirms both
characteristic features of the hQHS phase; indeed, the data
show that two longitudinal resistances are practically the
same (Rxx ≈ Ryy) and are independent of ν (cf. dashed line).
From Fig. 1, we can easily identify the characteristic filling
factors ν1 ≈ 7 and ν2 ≈ 12.5, which mark the crossovers
from the QHS to the hQHS phase and from the hQHS to the
CZS phase, respectively.
In a similar manner, we have obtained ν1 and ν2 for

sample A and ν2 for sample C (which does not support the
QHS phase due to higher Al mole fraction x), which
we then use to construct the experimental phase diagram
shown in Fig. 2. We start by adding points representing the
dimensionless Drude conductivity σ̃0 for samples A, B, C
(see Table I) and the corresponding filling factors ν1 (solid

TABLE I. Sample ID, Al mole fraction x, electron density ne,
mobility μ, and Drude conductivity in units of e2=h, σ̃0 ¼ hneμ=e
at zero magnetic field (B ¼ 0).

Sample
ID x ne (1011 cm−2) μ (106 cm2 Vs) σ̃0 (103)

A 0.000 57 3.0 6.5 8.0
B 0.000 82 2.9 4.1 4.9
C 0.0078 2.7 1.2 1.3

FIG. 1. Longitudinal resistances Rxx (solid line) and Ryy (dotted
line) as a function of the filling factor ν measured in sample B.
Gap centers between spin-resolved Landau levels are labeled by
N ¼ 2; 3;…, at the top axis (ν ¼ 2N þ 1). The conventional
QHS phase (Rxx > Ryy) and the CZS phase (Rxx ≈ Ryy ∝ ν−1)
occur at half-integer ν ¼ 9=2; 11=2; 13=2 and at ν ¼ 27=2;
29=2;…, respectively. The hQHS phase is identified at inter-
mediate half-integer filling factors ν ¼ 15=2;…; 25=2, where the
resistance is isotropic and ν independent. The characteristic ν0

(ν−1) dependence of the isotropic resistance in the hQHS (CZS)
phase is marked by dashed (dash-dotted) line.

PHYSICAL REVIEW LETTERS 125, 236803 (2020)

236803-2



circles) and ν2 (solid squares). To connect these data points,
we use the theoretical boundaries of the hQHS phase [54].
The lower boundary ν ¼ ν1, separating the QHS and the
hQHS phases, is given by [54]

ν1 ≃
ffiffiffiffiffi
σ̃0

p
α

; ð1Þ

where α [63] is the QHS density of states in units of the
density of states per spin at B ¼ 0, g0 ¼ m⋆=2πℏ2. This
boundary can be obtained by either matching the param-
eter-free geometric average of the resistivities in the QHS
phase ffiffiffiffiffiffiffiffiffiffiffiffi

ρxxρyy
p ¼ðh=e2Þ=ð2ν2þ1=2Þ≈ðh=e2Þ=2ν2 [55,57]

and the resistivity in the hQHS phase [54],

ρ̃hQHS ≡ h
e2

α2

2σ̃0
; ð2Þ

or, equivalently, by setting the resistivity anisotropy ratio to
unity, ρxx=ρyy ≈ ðσ̃0=α2ν2Þ2 ¼ 1 [54,57].
The higher boundary ν ¼ ν2 marks the crossover from

the hQHS to the CZS phase and is represented by

ν2 ≃
σ̃0
α2

τq
τ
: ð3Þ

This boundary can be obtained by equating α and the
density of states at the center of the Landau level in
CZS phase in units of the density of states at B ¼ 0,

ffiffiffiffiffiffiffiffiffiffi
ωcτq

p [65,66] or by matching ρhQHS and the resistivity in
the CZS phase [60],

ρCZS ≡ h
e2

1

ν

τq=2τ

ðτq=2τÞ2 þ 1
≈

h
e2

1

ν

τq
2τ

: ð4Þ

We thus see that for a given carrier density, as mentioned
above, ν2 and ν1 are controlled by τ and τq, respectively.
Strictly speaking, Eqs. (1) and (3) are not sharp boundaries
but rather gradual crossovers between corresponding
phases.
With the help of Eq. (1) and experimental values of ν1 in

samples A and B, we estimate α ≈ 11, which is smaller than
the theoretical estimate of α ≃ 18 [57,63]. We then para-
meterize scattering rates τ−1 and τ−1q as

τ−1 ¼ τ−10 þ κx; τ−1q ¼ τ−1q0 þ κx; ð5Þ

where x is the Al mole fraction, κ ≈ 24 ns−1 per % Al [62],
and τ−10 ≈ 3 ns−1 [62] is the transport scattering rate in the
limit of x → 0. To find the remaining parameter τ−1q0 , which
is the quantum scattering rate in the limit of x → 0, we use
experimental ν2 values and notice that Eqs. (1) and (3) yield
τq=τ ≃ ν2=ν21. Using Eq. (5), we then obtain an estimate for
τq0 ≃ 0.05 ns, which is in good agreement with τq values
found from low B experiments [67–69] on microwave-
induced [70–72] and Hall-field-induced [73–75] resistance
oscillations in GaAs quantum wells.
We next use ne ¼ 3 × 1011 cm−2 and m⋆ ¼ 0.06m0

[76–80] to compute the phase boundaries, Eqs. (1) and
(3), which are shown in Fig. 2 by solid lines. Both
lines pass in close proximity to the experimentally
obtained ν1 (solid circles) and ν2 (solid squares) from all
samples, showing excellent agreement between theory [54]
and experiment. Finally, we add data points (open circles
and squares) from three other AlxGa1−xAs=Al0.24Ga0.76As
quantum wells that were investigated in a different context
[64]. These points are also in agreement with the theory and
the present experiment.
Having confirmed the existence of the hQHS phases in

AlxGa1−xAs=Al0.24Ga0.76As quantum wells, we next exam-
ine the possibility for these phases to exist in ultrahigh
mobility GaAs quantum wells (without alloy disorder).
In such samples, the lower boundary ν1, Eq. (1), might
approach and even merge with the higher boundary ν2,
Eq. (3), eliminating the hQHS phase as a result. To test this
scenario, we revisit the data obtained from sample A of
Ref. [57] with σ̃0 ≈ 3.4 × 104, much higher than in samples
used in the present study. As illustrated in Fig. 3, showing
ρxx (solid triangles) and ρyy (open triangles) [81] as a
function of the filling factor ν, the QHS anisotropy in this
sample collapses at ν1 ≈ 20. Using Eq. (1), we can then
estimate α ¼ ffiffiffiffiffi

σ̃0
p

=ν1 ≈ 9 [83]. With τq ≃ 0.05 ns, Eq. (3)
gives ν2 ≈ 21, which is very close to ν1 ≈ 20. Indeed, the

FIG. 2. A diagram in the ðν; σ0Þ plane showing QHS, hQHS,
and CZS phases. Solid lines represent crossovers between phases,
Eq. (1) [left (upper) line] and Eq. (3) [right (lower) line]. Solid
circles (solid squares) represent experimental ν1 (ν2) and hori-
zontal dotted lines mark σ̃0 for samples A–C [62]. Open circles
(squares) are additional data from a study conducted in a different
context that conform to our present findings [64].
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data in Fig. 3 show that the QHS phase crosses over directly
to the CZS phase, bypassing the intermediate hQHS phase.
In the QHS phase, the easy resistivity is ν independent

and is described by ρyy ¼ ρhQHS, Eq. (2), while the hard
resisitivty exhibits clear ν−4 dependence and follows [54]

ρxx ≃
h
e2

σ̃0
2α2ν4

: ð6Þ

However, the agreement between theory and experiment
breaks down at ν < νd ≈ 8, where one observes significant
deviations leading to the reduction of the anisotropy. While
the nature of such reduction is unclear, it becomes more
pronounced upon further cooling and might reflect a
crossover to another competing ground state [85,86].
We can account for the observed anisotropy reduction at
lower filling factors assuming that the QHS phase has a
finite concentration of dislocations separated by an average
distance Ld ¼ βΛ=2 along stripes, where β is a numerical
factor. Scattering of drifting electrons by these dislocations
limits their drift length by Ld ≪ Ly and the resistivities
calculated in [54,57] need to be modified to [87,88]

ρxx ¼
h
e2

β

2ν2
; ð7Þ

ρyy ¼
h
e2

1

2βν2
: ð8Þ

Equations (7) and (8) are plotted as dashed lines in Fig. 3.
Equating Eq. (7) to Eq. (6) [or Eq. (8) to Eq. (2)], we find
that the crossover to the dislocation limited transport
happens at

νd ≡ ν1ffiffiffi
β

p : ð9Þ

With νd ≃ 8 and ν1 ≃ 20, we find β ¼ ðν1=νdÞ2 ≃ 6.3. This
value does not seem unreasonable and correctly accounts
for the saturation of the anisotropy, ρxx=ρyy ¼ β2 ≈ 40 [57].
Our experimental findings in AlxGa1−xAs quantum wells

(Fig. 2) and in a clean GaAs quantum well (Fig. 3) can be
unified in a phase diagram shown in Fig. 4, which treats
σ0=α2 and τq=τ as independent parameters. Here, the QHS
phase is observed above the horizontal line corresponding
to ν1 ¼ 9=2. To detect the hQHS phase, one should satisfy
both ν2 − ν1 > 1 and ν2 > 11=2, since at least two half-
integer filling factors are needed to establish the ν inde-
pendence of the resistance [89]. As a result, the most
favorable conditions for the hQHS phase are realized at the
top-right corner of the diagram. However, as demonstrated
by our experiments on AlxGa1−xAs quantum wells, the
hQHS can be detected at modest mobilities provided that
the ratio τq=τ is sufficiently high. On the other hand, this
ratio is much smaller in clean GaAs quantum wells, which
makes the hQHS detection difficult in such systems despite
their high mobility. The phase diagram shown in Fig. 4
provides a a road map for future experiments aiming to
detect the hQHS phases.
In summary, we have observed hidden quantum Hall

stripe (hQHS) phases [54] forming near half-integer filling
factors of AlxGa1−xAs=Al0.24Ga0.76As quantum wells with
varying x. These phases reside between the conventional
stripe phases and the isotropic liquid phases and are
characterized by isotropic resistivity that is not sensitive
to the filling factor. Analysis of the experimental phase
diagram reveals that the QHS density of states is smaller

FIG. 3. ρxx (solid triangles) and ρyy (open triangles) [81]) as a
function of filling factor ν for sample A of Ref. [57]. Lines are
computed using theoretical expressions, marked by equation
numbers.

FIG. 4. A diagram in the ðτq=τ; σ0=α2Þ plane showing four
regions marked by detectable phases. Circles are experimental
data points from all four samples studied.
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than predicted by the Hartree–Fock theory [3,4], calling for
improved theory. The unique transport characteristics of the
hQHS phases should allow exploration of the stripe physics
in 2D systems that, unlike GaAs, lack symmetry-breaking
fields. On the other hand, ultrahigh mobility GaAs quantum
wells favor conventional QHSs over hQHSs due to a
shrinking filling factor range where the hQHS phases
can form.
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