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The quest for non-Abelian quasiparticles has inspired decades of experimental and theoretical efforts,
where the scarcity of direct probes poses a key challenge. Among their clearest signatures is a thermal Hall
conductance with quantized half-integer value in units of κ0 ¼ π2k2BT=3h (T is temperature, h the Planck
constant, kB the Boltzmann constant). Such values were recently observed in a quantum-Hall system and a
magnetic insulator. We show that nontopological “thermal metal” phases that form due to quenched
disorder may disguise as non-Abelian phases by well approximating the trademark quantized thermal Hall
response. Remarkably, the quantization here improves with temperature, in contrast to fully gapped
systems. We provide numerical evidence for this effect and discuss its possible implications for the
aforementioned experiments.

DOI: 10.1103/PhysRevLett.125.236802

Introduction.—Measurements of the electronic or ther-
mal Hall effect are powerful experimental techniques for
identifying topologically ordered phases and their frac-
tional quasiparticles [1]. An electronic Hall conductance
sharply quantized to a noninteger value (in units of e2=h,
with e the electron charge) is intimately related to the
existence of fractionally charged quasiparticles [2].
Similarly, a quantized noninteger thermal Hall conductance
κxy reflects excitations with non-Abelian braiding proper-
ties [3–8]. While the electronic Hall effect has been
routinely measured for several decades [9], precise
measurements of the thermal Hall effect in solid-state
systems have been achieved only recently [10–14].
Remarkably, experiments on two completely different
systems found half-integer values, indicative of so-called
Ising anyons. The first is a two-dimensional electron gas in
a perpendicular magnetic field at filling factor ν ¼ 5=2with
a thermal Hall conductance κxy ¼ 5=2 [12]. The second is
the magnetic insulator α-RuCl3, where κxy ¼ 1=2 per layer
was measured in an applied magnetic field [13].
The level of quantization observed in the thermal Hall

measurements is significantly below the one in their
electronic analogs. This may be due to heat leakage from
the measured system to its environment, e.g., via phonons.
Our work focuses on an additional, intrinsic property that
may be particularly relevant to situations with half-integer
κxy under experimental conditions, which necessarily
include sample imperfections, i.e., disorder [15–17]. In
the context of both the quantum Hall effect and α-RuCl3,
the half-integer κxy results from topological px � ipy
pairing [3,18] (and consequently chiral edge Majoranas)

of emergent fermions: composite fermions and spinons,
respectively. In both cases, the fermions are minimally
coupled to an emergent gauge field, which acquires a
Higgs mass and thereby eliminates the phase mode of the
emergent-fermion superconductor. The effective low-
energy theory thus falls into class D in the Altland-
Zirnbauer classification (AZ) [19], which permits a
delocalized thermal metal phase [5,20–28]; see
Supplemental Material for more background [29]. This
property is sharply distinct from, e.g., the symmetry class A
of electrons in the quantum Hall effect, which always
localizes unless the system is at a topological phase
transition [31]. The thermal metal also crucially differs
from the metallic state formed from electrons that weakly
antilocalize due to spin-orbit coupling [32–35]: It exhibits
delocalized states only at energy E ¼ 0 where particle-hole
symmetry holds; at any nonzero energy it crosses over into
class A at long length scales and all states localize.
In this work we demonstrate remarkable consequences

of these localization characteristics: As temperature
increases, the longitudinal thermal conductance decreases
and vanishes for thermodynamically large systems.
Concomitantly, the thermal Hall conductance becomes
better quantized. This somewhat counterintuitive behavior
arises because thermal conductance is determined not
solely by the delocalized E ¼ 0 states, but by all states
in an energy window∼T. Since almost all of these states are
localized, the thermal conductance vanishes. This locali-
zation behavior is similar to the one exhibited by electrons
near an integer quantum Hall plateau transition. There, an
infinitely sharp transition at T ≠ 0 is predicted on the
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single-particle level, but interactions render the width of the
transition finite [36]. In the present case, interactions allow
thermal metal behavior to persist over a finite temperature
window. We will comment on the role of interactions
towards the end of our discussion.
Model and symmetries.—For concreteness, we frame our

discussion in the language of the quantum Hall plateau at
ν ¼ 5=2. At energies below the charge gap, we model the
system by a quadratic Bogoliubov–de Gennes Hamiltonian.
We require that it exhibits two topological phases that are
related by time-reversal symmetry (TRS) and permits a
thermal metal phase. (TRS of composite fermions corre-
sponds to particle-hole symmetry of electrons within a
single Landau level [37], which relates the Pfaffian and
anti-Pfaffian phases [38,39].)
A minimal model that satisfies these criteria is given by a

honeycomb lattice with a single Majorana fermion per site
as shown in Fig. 1 [18]. (Such a model also arises
microscopically in the Kitaev spin model below the vison
gap. For a discussion of the thermal conductance at higher
energies, see Ref. [40].) The Hamiltonian reads

H ¼ iv1
X
hj;ki

γjγk þ iv2
X
⟪j;k⟫

γjγk; ð1Þ

where γj is a Majorana operator on site j, hj; ki denotes
directed bonds from B to neighboring A sites, and ⟪j; k⟫
clockwise next-nearest neighbor bonds (see Fig. 1). We set
v1 ¼ 1 throughout the following, expressing all energy
scales relative to it.
The Hamiltonian Eq. (1) obeys particle-hole (PH)

symmetry. Writing H ¼ γTHγ, with γ a column vector
of Majorana operators, the PH symmetry can be expressed
as H ¼ −H�, such that the system belongs to class D. For
v2 ¼ 0, the model features an additional TRS consisting of
complex conjugation followed by a sign change of the

wave function on one of the two sublattices, and thus falls
into the symmetry class labeled BDI in the AZ classifica-
tion. Here, the spectrum is gapless, with two linearly
dispersing Majorana cones at momenta K and K0. A
nonzero mass term v2 results in a gapped phase with
Chern number C ¼ sgnðv2Þ.
Notice that TRS, which is present for v2 ¼ 0, implies a

vanishing thermal Hall conductance, while the correspond-
ing particle-hole symmetry in the first excited Landau level
requires the value 5=2 [41]. Consequently, a “background”
contribution of 5=2 must be added to interpret results for
the model system in the quantum Hall context, i.e.,
κQHxy ¼ κxy þ 5=2. The TRS breaking parameter v2
describes either Landau level mixing or the deviations of
ν from 5=2.
Zero-temperature phase diagram.—We now introduce

random hopping disorder and examine the localization
properties near the topological phase transition of the clean
system as a function of disorder strength V and energy E.
Specifically, we replace vi → vi þ δvi with δv1 from a
uniform distribution ½−V; V� and δv2 independently from
½−V=10; V=10�. We numerically compute the energy-
dependent transmission probability PðEÞ for a cylindrical
L × L system with zigzag edges. See Supplemental
Material for details [29].
In Fig. 2(a) we show the transmission at zero energy as a

function of v2 and disorder strength. At weak disorder, the
insulating C ¼ �1 phases remain separated by a direct
plateau transition; see also discussion in Refs. [20,24–27].
When V ≳ 1, however, a delocalized phase develops
around v2 ¼ 0. This is a disorder-induced thermal metal
where PðE ¼ 0Þ increases logarithmically with system
size; see Supplemental Material [29]. Further increasing
the disorder strength enlarges the thermal metal region. In
Fig. 2(b), we plot the energy-dependent transmission

FIG. 1. Left: The unit cell of the model (shaded area) contains
two sites, indicated by solid and open circles, each hosting a
single Majorana mode. The signs of (i times) the nearest-
neighbor hopping v1 and next-nearest-neighbor hoppings v2
are indicated by the direction of arrows on the corresponding
bonds. Right: Band structure of the model in a ribbon geometry,
infinite in the horizontal direction and consisting of 30 unit cells
in the vertical direction, using v1 ¼ 1 and v2 ¼ −0.2. Bulk states
are shown in green; states on the top and bottom edges are shown
in red and blue, respectively.

(b)(a)

FIG. 2. The average transmission of a 80 × 80 unit cells system,
computed using 1000 disorder realizations. (a) The horizontal
axis is v2 and the vertical axis is disorder strength V. The
topological transition between phases with Chern numbers
C ¼ �1 evolves into a thermal metal phase with increasing
disorder strength. The dashed blue line indicates V ¼ 1.3. (b) For
fixed V ¼ 1.3, the average transmission is plotted as a function of
v2 and energy E. Away from the particle-hole symmetric line,
E ¼ 0, the thermal metal phase disappears; it is replaced by
topologically trivial insulators (C ¼ 0).

PHYSICAL REVIEW LETTERS 125, 236802 (2020)

236802-2



probability at fixed disorder strength V ¼ 1.3, where the
thermal metal is well developed. We observe that the metal
is only present at E ¼ 0. This is the expected result based
on weak antilocalization in the PH symmetric case, E ¼ 0,
and weak localization for any E ≠ 0. The latter case
features direct insulator-to-insulator transitions, with a
trivial, C ¼ 0 phase between the topological C ¼ �1
phases.
We have further observed that the crossover regions in

Fig. 2(b) (the regions with nonzero transmission) shrink
with increasing system size and grow with δv2 disorder.
The former is required due to the absence of metallic phases
in class A, i.e., for E ≠ 0. To understand the latter, recall
that for v2 ¼ δv2 ¼ 0 the model is in class BDI, which only
permits a critical-metal phase (without antilocalization, see
Supplemental Material [29]), distinct from the class-D
thermal metal [26]. Gradually introducing δv2 disorder
allows the formation of a growing thermal metal phase at
E ¼ 0 and, in finite systems, a corresponding crossover at
E ≠ 0. For the numerically accessible system sizes, we find
that the C ¼ 0 insulator fully disappears into a smooth
crossover for approximately equal v1 and v2 disorder.
At E ≠ 0 the system is in class A and thus always

localizes. For small energies, the localization length is
determined by the crossover between weak antilocalization
of class D and weak localization of class A [25]. At
distances below the diffusion length LE ¼ ffiffiffiffiffiffiffiffiffiffi

D=E
p

, with D
the diffusion constant, the interference of electron and hole
trajectories gives rise to a logarithmic increase of the
conductance. At scales above LE, this interference is
suppressed; the system behaves as a class-A conductor,
which tends to localize. The localization length ξðEÞ can be
computed as for the case of spin-orbit coupled electrons in a
weak magnetic field, which features a similar crossover
between weakly antilocalizing class AII and weakly local-
izing class A [42]. We find

ξðEÞ ¼ l0ffiffiffiffi
E

p exp

�
1

4
ln2

1

E

�
; ð2Þ

with l0 the mean free path (see Supplemental Material
[29]). Both LE; ξðEÞ depend on energy and diverge with
decreasing energy, with asymptotically ξðEÞ ≫ LE. In a
finite-size system it is further useful to define two crossover
energy scales: EL ∝ L−2, for which LE ¼ L, and Ec, for
which ξ ¼ L. States with energies below EL are weakly
antilocalizing, states with energies between EL and Ec are
characterized by weak localization, whereas strong locali-
zation sets in above Ec.
Finite temperature effects.—The above discussion and

the results presented in Fig. 2 suggest that the dimension-
less thermal conductance tensor κ changes qualitatively as
temperature is swept past either crossover scale. (In infinite
systems Ec ¼ EL ¼ 0.) To test this expectation, we com-
pute κxx and κxy in a six-terminal transport geometry, where

both can be obtained in the same numerical simulation.
Terminals are numbered from 1 to 6, as shown in the inset
of Fig. 3. The scattering matrix has a 6 × 6 block structure,
with blocks sij containing the probability amplitudes for
transmission from lead i to lead j.
All reservoirs are kept at equal chemical potentials, and

terminals 1 and 4 are temperature-biased as T1;4 ¼ �ΔT=2
relative to the base temperature T. Consequently, a heat
current IQ ¼ I1 ¼ −I4 flows through the system. The
remaining terminals are connected to thermometers, such
that I2;3;5;6 ¼ 0. Setting h ¼ kB ¼ 1, temperatures and heat
current are related via [43]

0
BBBBBBBBB@

IQ
0

0

−IQ
0

0

1
CCCCCCCCCA

¼ M

0
BBBBBBBBB@

ΔT=2
T2

T3

−ΔT=2
T5

T6

1
CCCCCCCCCA
; ð3Þ

where the matrix M is given by

Mij ¼
Z

∞

0

E2

T

�
−
∂fðE; TÞ

∂E
�
½δijNj − trðs†ijsijÞ�dE; ð4Þ

with δij denoting the Kronecker delta, Nj the number of
modes in lead j, and fðE; TÞ ¼ 1=ð1þ eE=TÞ the Fermi-
Dirac distribution. Notice that the scattering matrix depends

FIG. 3. The dimensionless longitudinal and transverse thermal
conductances (blue, orange) are computed in a six-terminal
geometry (inset) at T ¼ 0 and T ¼ 0.05 (solid, dashed). We
use a rectangular system composed of 80 zigzag chains in the
vertical direction and 160 hexagonal plaquettes in the horizontal
direction, and average over 1000 disorder realizations (V ¼ 1.3),
with line thickness indicating the error bars. The thermal metal
phase present in the v2 ¼ 0 region of the plot is converted into an
insulating phase at nonzero temperature, leading to a quantized
plateau in both longitudinal and transverse conductance. Notice
the smaller error bars in the finite-temperature curves, which
occur because the energy integral Eq. (4) provides additional
disorder averaging.
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on energy, which results in a nontrivial temperature
dependence of M. We numerically compute the matrix
M for each disorder realization, and insert it into Eq. (3) to
calculate the elements of the thermal resistance tensor, Rxx
and Rxy. We define Rxx ¼ ðT2 − T3Þ=IQ, whereas for Rxy
we average over the temperature drop between terminals 2
and 6 and between terminals 3 and 5: Rxy ¼ ðT2 − T6 þ
T3 − T5Þ=ð2IQÞ to reduce geometric effects. The dimen-
sionless conductance tensor κ is then obtained by inverting
R and dividing by κ0. In Fig. 3 we plot the disorder-
averaged components κxx and κxy at T ¼ 0 (solid lines) and
T ¼ 0.05 (dashed lines). We observe that at zero tempera-
ture the transition between C ¼ �1 phases in which
κxy ¼ �0.5 occurs via an intermediate thermal metal phase.
This is signaled by a large peak in κxx and a nonquantized
κxy. At finite temperature the thermal metal peak is replaced
by an intermediate plateau of κxx=xy ≈ 0 in the small jv2j
region of the plot. At large jv2j, however, the dimensionless
thermal conductance remains qualitatively unchanged, with
κxy → �0.5 and κxx → 0, since the insulating phases with
C ¼ �1 extend to an energy range larger than temperature
(see Fig. 2).
To understand the observed behavior, notice that temper-

ature-dependent factor in the integrand of Eq. (4) is sharply
peaked at energies around T and becomes a delta function at
zero temperature. For temperatures below the crossover
energy scale Ec, the main contribution to the integral comes
from extended states and κxx is large while κxy is approx-
imately linear in v2. The low-temperature regime subdivides
into T < EL, where κxx is determined by the metallic trans-
mission probability PðE ≈ 0Þ and EL<T<Ec, where weak
localization modifies this result; see Supplemental Material
[29]. At temperatures above Ec, strong localization becomes
operative and leads to κxx → 0, as we observe numerically.
This insulating behavior is accompanied by an emergent
intermediate plateau in κxy, as shown in Figs. 3 and 4(a).
Effect of interactions.—Both the numerical simulations

and the σ-model treatment were performed within quadratic
fermionic Hamiltonians, where transport is fully phase
coherent. We now qualitatively discuss how interactions
change these results, focusing on the fractional quantum
Hall effect at ν ¼ 5=2. We consider a thermodynamically
large system, L → ∞, and focus on phase-breaking of the
emergent fermions. The presence of phonons leads to
another channel for heat transport, which is expected to
follow a power law of κph ∝ T5 [44]. Its contribution is
suppressed at low temperatures, as indeed observed in the
experiment [12,13].
The phase-breaking interactions of an interfering par-

ticle with its environment introduce a dephasing length Lϕ

[45], which diverges with decreasing temperature, pre-
sumably following a power law. This length should be
compared to the diffusion length LE and the localization
length ξðEÞ [defined near Eq. (2)]. The relevant energy is
the temperature, since the chemical potential is zero.

For a clean sample at high temperature, the dephasing
length is presumably the shortest scale, and the system’s
conductance takes the antilocalizing class-D form, where
κxx ∝ logLϕ=l0. As the temperature is lowered, we will
have Lϕ > LE and patches of size Lϕ become large enough
for each to manifest a tendency to localization as a system
of class A. Thus, in this regime, the conductance decreases
with decreasing temperature, with its maximum
log ðD=Tl2

0Þ being attained when Lϕ ≈
ffiffiffiffiffiffiffiffiffiffi
D=T

p
. If phase

breaking is sufficiently weak, there will be an intermediate
range of temperatures in which Lϕ > ξ and we expect a
conductance much smaller than unity. The charge neutrality
of the Majorana particles suggests that such a regime may
indeed exist. In any case, in the zero-temperature limit the
energy dependence of ξ [see Eq. (2)] makes it larger than
Lϕ and the system becomes metallic.
Conclusion.—We have shown that in systems whose

effective low-energy theory falls into symmetry class D,
increasing temperature can enhance quantization of
the thermal Hall response. Moreover, new plateaus of
quantized κxy that are absent in the low-temperature limit
may emerge and exhibit near-perfect quantization.
These findings have direct implications for the inter-
pretation of the measured half-integer values of κxy in
Refs. [12,13].
In the context of the ν ¼ 5=2 plateau, it is not settled

whether the observed thermal Hall conductance represents
a bulk property or is due to incomplete equilibration
between edge states [46–52]. In the former case, the
PH-Pfaffian with topologically quantized κxy ¼ 5=2, a
disorder-induced topological phase with the same quan-
tized value, or a thermal metal where κxy is not strictly

FIG. 4. (a) The numerically computed thermal conductance
shows order-unity variations with v2 at low temperatures. At
higher temperatures it approaches the time-reversal symmetric
value κxy ¼ 0 with very weak dependence on v2 ∈ ½−0.07; 0.07�.
(b) Proposed finite-temperature phase diagram of ν ≈ 5=2 quan-
tum Hall states. The thermal metal extends to finite temperatures
due to residual interactions between neutral quasiparticles. At
higher temperatures, but still below the charge gap, the mecha-
nism discussed here sets in. Near ν� it results in an large region
where κxy approaches the particle-hole symmetric value 5=2.
Hatched regions denote quantization of κxy that is better than a
threshold value, say 1%. The approximate plateaus are separated
by relatively sharp crossovers as shown in Fig. 3.
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quantized are all possible [15–17]. If particle-hole sym-
metry were present, it would constrain the Hall response of
the thermal metal to be the same as that of PH-Pfaffian. In
reality, this symmetry is broken due to relatively strong
mixing between Landau levels—the Coulomb energy is
comparable to the Landau level splitting in the relevant
experiments. Our work shows how an approximately
quantized thermal Hall response can emerge with increas-
ing temperature out of a zero-temperature thermal metal
whose response is nonquantized. We thus propose that the
zero-temperature phase diagram of the quantum Hall state
near ν ¼ 5=2 introduced in Refs. [15–17] extends to
nonzero temperatures as shown in Fig. 4(b).
More generally, our work emphasizes the importance of

systematically measuring the temperature dependence of
the approximately quantized κxy. (In the case of α-RuCl3
the thermal Hall measurements were performed at moder-
ate temperatures of around 4 K.) Theoretically, a careful
analysis of dephasing could help determine whether an
underlying thermal metal is possible or if the measured κxy
reflects a topological phase.
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