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Rapid progress in electrically controlled plasmonics in solids poses a question about possible effects of
electronic reservoirs on the properties of plasmons. We find that plasmons in electronically open systems
[i.e., in (semi)conductors connected to leads] are prone to an additional damping due to charge carrier
penetration into contacts and subsequent thermalization. We develop a theory of such lead-induced
damping based on the kinetic equation with microscopic boundary conditions at the interfaces, followed by
perturbation theory with respect to transport nonlocality. The lifetime of the plasmon in an electronically
open ballistic system appears to be finite, of the order of conductor length divided by carrier Fermi velocity.
The reflection loss of the plasmon incident on the contact of the semiconductor and perfectly conducting
metal also appears to be finite, of the order of Fermi velocity divided by wave phase velocity. Recent
experiments on plasmon-assisted photodetection [Nat. Commun. 9, 5392 (2018)] are discussed in light of
the proposed lead-induced damping phenomenon.
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Plasmons represent collective oscillations of charge
carriers and an electromagnetic field. Both instances can
freely propagate in space. Free propagation of electromag-
netic waves leads to the radiative decay of plasmons which
has been studied extensively [1–4]. Charge carriers may
also leak away from plasmonic system if it is coupled to
electronic reservoirs (contacts). This process would also
lead to plasmon damping. Unlike radiative damping,
“contact damping” has gained very little attention because
most plasmonic systems studied so far were either elec-
tronically closed (nanoparticles [1–3]) or extended [4–6].
With the rapid progress in the electrical control of plasmons
[7,8] and electrical readout of plasmon-enhanced photo-
current [9,10], this damping pathway becomes urgent.
There are several experimental evidences for the impor-

tant role of contacts on plasmon damping that have not
received due attention. First, interference of launched and
reflected plasmons is readily observed at the edges of 2D
and 1D semiconductors [5,11,12], but scarcely observed at
contacts of semiconductors and metals [7]. Second, photo-
current spectroscopy of plasmon resonance in transistor
structures with close leads provides generally larger line-
widths [13,14] compared to electromagnetic transmission
measurements in grating-gated semiconductors with distant
leads [15,16]. In recent measurements of plasmon-
enhanced photovoltage in a graphene bilayer transistor
[10], the visibility of plasmon resonance was enhanced by
p − n junction barrier at the metal-graphene interface.
These factors tell us that the behavior of plasmons at the
contact of the semiconductor and metal is not simply
refection at impedance discontinuity.
The theory of plasmon decay in electronically open

systems is still lacking. Its first theoretical evidence

appeared in numerical simulations of plasmons in confined
2D systems with fixed electron distributions at contacts
[17]. Further evidence appeared in simulations of current-
driven plasmon instability [18], though hardly distinguish-
able from bulk damping. Another approach to the problem
lies in finding the dynamic conductance of lead-coupled
conductors and analyzing its peaks as a function of

(a)

(b) (c)

FIG. 1. (a) Electron occupation in a semiconductor channel
coupled to metal leads vs energy and coordinate in the presence
of plasma wave. Blue filled regions correspond to equilibrium
electrons, red—to nonequilibrium ones, excited by the plasmon
electric field. A nonequilibrium electron incident on a contact can
either transmit and thermalize (with probability t) or be reflected
back from a contact (with probability 1 − t). (b) Open plasmonic
resonators with 1D and 2D channels (nanotube and graphene are
shown as example) coupled to source and drain contacts.
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frequency [19]. Such calculation could be performed only
for 1D systems with restrictive assumption of the fully
screened Coulomb interaction [20]. Remarkably, the latter
approach hints that plasmon damping in open systems is
tightly linked to the finite conductance of ballistic systems
(given by the Landauer [21] and Sharvin [22] formulas in
1D and 2D, respectively).
In this Letter, we present an analytical theory of plasmon

decay in 1D and 2D (semi)conductors coupled to leads [23].
A schematic of this process is shown in Fig. 1(a): a
nonequilibrium electron participating in plasma oscillation
penetrates into a contact and is thermalized therein. We find
that such damping appears to be due to the nonlocality of the
current-field response, i.e., it vanishes if theFermivelocityv0
in the channel tends to zero. Our effect should be distin-
guished from a plethora of nondissipative nonlocal effects in
plasmonic systems [24–26]. In the low-temperature limit, the
damping is of order tv0=L, where L is the distance between
leads, v0 is the Fermi velocity, and t is the electron trans-
mission probability at semiconductor-metal interface. An
extra contribution to damping oscillating with frequency is
found. It appears to be due to synchronization between the
carrier transit and plasma oscillation. We find that plasmons
incident on the semiconductor-metal contact experience
reflection loss due to the above mechanism. It occurs even
for ballistic semiconductors and perfectly conductingmetals.
Nonlocal conductivity in electronically open system.—

The main building block for the evaluation of plasmon
losses in open systems is the conductivity kernel σðx; x0Þ
linking the current density jðxÞ and electric field EðxÞ

jðxÞ ¼
Z

L

0

σðx; x0ÞEðx0Þdx0: ð1Þ

We find σðx; x0Þ in the d-dimensional semiconductor
channel with metal leads located at x ¼ 0 and x ¼ L
[Fig. 1(a) and 1(c)]. The metals are assumed to be perfectly
conducting, and strong electron scattering maintains the
equilibrium Fermi distributions therein. The latter fact
(being a definition of perfect contact [27]) is justified
when the carrier collision frequency in metal γm ∼
1013;…; 1014 s−1 [28] exceeds that in the channel and
the plasmon frequency ω. Electron distribution in the
channel obeys the classical kinetic equation being valid
if ℏω is below electron Fermi energy εF. Above require-
ments are fulfilled for terahertz plasmons. In the presence
of electric field EðxÞe−iωt, the distribution function
fðx;pÞ¼f0ðpÞþδfðx;pÞe−iωt obeys

−iðωþ i0Þδf þ vx
∂δf
∂x − eEðxÞ ∂f0∂px

¼ 0; ð2Þ

where vx is the x component of electron velocity, and f0 is
the equilibrium Fermi function. We shall focus on ballistic

systems with long momentum relaxation time τω ≫ 1 to
distinguish the bulk and contact damping.
A nonequilibrium electron incident on the semiconduc-

tor-metal junction can either penetrate and thermalize
therein with probability t, or undergo specular reflection
with probability r ¼ 1 − t. These considerations relate the
distributions of left- and right-moving electrons at the
contacts [29]:

δfð0; pxÞ ¼ rδfð0;−pxÞ;
δfðL;−pxÞ ¼ rδfðL; pxÞ: ð3Þ

Solving the kinetic equation [Eq. (2)] in the low-temper-
ature limit kBT=εF ≪ 1, we obtained the nonlocal con-
ductivity kernel of the form [30]

σðx; x0Þ ¼ σDd
iω
2vF

�
F

�
x
L
;
x0

L
;Ωθ

�
cos θ

�
cos θ>0

; ð4Þ

Fðξ;η;ΩθÞ ¼ eþiðjξ−ηj=ΩθÞ − 2r
cos½ξþη−1

Ωθ
�− rcos½ξ−ηΩθ

�eþi=Ωθ

e−i=Ωθ − r2eþi=Ωθ
;

ð5Þ

where σD ¼ in0e2=ωm is the local Drude conductivity, n0
is the electron density, Ωθ ¼ vF cos θ=ωL is the dimen-
sionless transit frequency of electron moving at angle θ,
and the angular averaging h� � �icos θ>0 is performed over
right-moving carriers. The local Drude conductivity
σðx; x0Þ ≈ σDδðx − x0Þ is restored in the limit of small
normalized transit frequency Ωt ¼ vF=ωL ≪ 1, i.e., at
high frequencies and low Fermi velocities.
Damping rate in electronically open resonator.—

Plasmon frequencies ωn and field distributions EnðxÞ in
open resonators (n enumerates discrete modes) can be
found once material relations Eqs. (1) and (4) are supple-
mented with Poisson’s equation. An exact solution of such
a spectral problem for bounded nonlocal conductors looks
impossible. Fortunately, evaluation of damping rate due to
contacts, γcont ¼ −ω00

n is feasible with the aid of energy
balance considerations and perturbation theory with respect
to nonlocality [30,44]. The former states that the damping
rate equals the loss rate of wave energy Q divided by twice
the stored energy W, γcont ¼ Q=2W. Both Q and W are
functionals of yet unknown field distributions EnðxÞ. The
essence of perturbation theory is to replace the true
eigenfunctions EnðxÞ and frequencies ωn with those
obtained within the local Drude model of conduction,

Eð0Þ
n ðxÞ and ωð0Þ

n . The damping rates obtained within such
approximation will be valid to the leading order in transit
frequency Ωt ¼ vF=ωL.
The above premises are sufficient to derive expressions

for lost and stored energy, Q and W, and hence, the
damping rate due to contacts:
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γcont ¼
1

2

R
L
0 Eð0Þ

n ðx0Þσ0ðx; x0ÞEð0Þ
n ðxÞdxdx0R

L
0

σ00D
ωð0Þ
n
jEð0Þ

n ðxÞj2dx
; ð6Þ

where the prime and double prime denote real and
imaginary parts. The numerator of Eq. (6) represents the
power developed by the field over the oscillating particles,
this energy dissipating eventually in contacts [31]. The
denominator of Eq. (6) is the total stored energy of plasma
oscillation. Upon derivation, we have used Brillouin’s
formula for energy in dispersive media [32] and equality
of average kinetic and potential energies.
One may wonder how the information about carrier

leakage is encoded in the expression for damping rate
Eq. (6) where integration is performed over the channel
interior. In fact, it is contained in the conductivity kernel
that is sensitive to microscopic boundary conditions. The
finite dissipative (real) part of conductivity kernel appears
only for permeable contacts (r < 1), and disappears for
perfectly reflecting (r ¼ 1) ones.
The effect of boundaries on bulk current jðxÞ is visu-

alized in Fig. 2(a), where we show its real and imaginary
parts induced by the field of plasmon mode with n ¼ 2,

Eð0Þ
2 ðxÞ ∝ cos 2πx=L. Both j0ðxÞ and j00ðxÞ possess short

fringes of wavelength 2πv0=ω, while the generating field
has a long wavelength of L. The fringe amplitude tends to
zero for perfect reflection, and they are localized near the
contacts in the presence of bulk damping. They are nothing
but transit-time oscillations of current carried by Fermi
surface electrons. Precisely these short fringes lead to
nonzero work produced by the field on particles. The
emergence of short-wavelength structures for a long-wave-
length generating field allows us to interpret contact
damping as spatially localized Landau damping.
We now quantify the contact contributions to plasmon

damping in several experimentally relevant structures, such
as (a) a 1D nanotube field-effect transistor (FET) and (b) a

FETwith a 2D channel [Figs. 1(b) and 1(c)]. The zero-order
field distributions Eð0Þ

n are known here exactly [33] if the
vertical extent of contacts much exceeds the plasmon
wavelength:

Eð0Þ
n ðxÞ ¼ Emax cosðπnx=LÞ: ð7Þ

For structures with keen contacts, they can be used as an
approximation with ∼10% accuracy [34]. Evaluation of
integrals in Eq. (6) with fields [Eq. (7)] yields the following
estimates of damping γcont:

γcont
ωn

¼ −αðdÞtΩt − βðdÞt2Ωðdþ1Þ=2
t ΦoscðΩtÞ; ð8Þ

ΦoscðΩtÞ ¼
X∞
k¼1

rk−1

k
d−1
2

cos
�
k
Ωt

þ π

4
ðd − 1Þ þ πnk

�
: ð9Þ

The numerical prefactors α and β depend on channel
dimensionality and are given by

αð1Þ ¼ 1; αð2Þ ¼ 8

3π
; βð1Þ ¼ 1; βð2Þ ¼

ffiffiffi
8

π

r
:

The contribution to damping given by first term of
Eq. (8) is the inverse mean escape time of a free electron
from the channel. It is linear in Fermi velocity and inverse
to channel length, as shown in Fig. 3 with dashed lines. The
coefficient α decreases in higher dimensions due to the
longer transit time of the electron between the source and
drain, averaged over the Fermi surface.
The second (oscillatory) term of the Eq. (8) describes

possible resonances between the electric field and bouncing
electrons [35]. An enhancement of damping occurs if the
plasmon field acts in phase with most of the charge carriers,
while its reduction occurs when the field and carriers
oscillate in counterphase. The resonances become narrower
with the reduction of transmittance t due to effective
prolongation between particle-field interactions, as seen
from the comparison of Figs. 3(a) and 3(b). The narrowing
is most pronounced in 1D systems, where carrier transit
times are not spread due to different directions of motion.
It is possible to show that oscillatory features in γcont will be
smeared both at finite temperature and finite internal
damping, while the leading Ωt term will not.
Energy loss of a wave incident at contact.—The contact

mechanism of damping would also manifest itself in plas-
monic interference phenomena near themetal-semiconductor
contacts. Analysis of such interference patterns became an
established tool for the determination of spectra and the
propagation length of plasmons [5,11].
We now realize that plasmon reflection from semi-

conductor-metal contact can never be perfect as some
fraction of carriers would penetrate into metal and thermal-
ize therein. Attenuated reflection from such contact is a

FIG. 2. Spatial distribution of the electric field (black) and
induced current (red, blue) in a 1D conductor coupled to perfectly
transmitting leads (r ¼ 0) for the second plasmon mode (n ¼ 2)
at transit frequency Ωt ¼ 0.016. To visualize the localization of
the current, we have added a small imaginary part to the
frequency in the conductivity kernel [Eq. (4)] mimicking the
internal scattering, ω → ωþ iτ−1, L=v0τ ¼ 2
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consequence of nonlocal conductivity; no attenuation
would have occurred if the semiconductor was described
by a local Drude conductivity.
The method for calculation plasmon reflection loss Apl ¼

1 − Rpl at the semiconductor-metal contact (located at
x ¼ 0) is similar to the evaluation of damping in a confined
structure. Namely, it equals the Joule losses (expressed
through nonlocal conductivity) divided by energy flux in an
incoming wave Sinc:

Apl ¼
1

Sinc

Z
0

−∞
Eð0Þðx0Þσ0ðx; x0ÞEð0ÞðxÞdxdx0: ð10Þ

The last necessary element for evaluation of losses is the
conductivity kernel in a semi-infinite semiconductor chan-
nel σðx; x0Þ. It is related to the nonlocal conductivity of the
extended system σ∞ðx − x0Þ via σðx; x0Þ ¼ σ∞ðx − x0Þ −
rσ∞ðxþ x0Þ [29]. It can be obtained from conductivity in

the finite-length channel Eq. (4) by taking the limit L → ∞
and keeping in mind small wave damping. As before,
Eq. (10) is perturbative with respect to nonlocality, for this
reason it is evaluated on field profiles obtained within the
local model of conduction Eð0ÞðxÞ ¼ Emax cos qx. Direct
integration in Eq. (10) leads us to

Apl ¼ ξðdÞt vF
ω=q

; ð11Þ

where ξð1Þ ¼ 1, ξð2Þ ¼ 16=3. The result is remarkably
simple: reflection loss of a plasmon incident on metal
contact is the ratio of carrier Fermi and plasmon phase
velocities, timed by the transmission coefficient for indi-
vidual carrier t.
When the dispersion of 2D and 1D plasmons is known

(ω2D ∝ q1=2 and ω1D ∝ q ln1=2ðqaÞ−1, where a is the
transverse size of quasi-1D conductor [36]), we can obtain
the frequency dependence of reflection losses shown in
Fig. 4. 1D plasmons exhibit enhanced loss at low frequen-
cies due to the relative smallness of the phase velocity.
Changes in refection losses with increasing carrier density
n are governed by the interplay of the Fermi velocity
enhancement v0 ∝ n1=d and “stiffening” of the plasmon
dispersion n1=2. In 1D systems, the Fermi velocity enhance-
ment is dominant, and losses raise at higher density. In 2D
systems (both in those with parabolic bands and graphene),
the Fermi velocity changes slightly, and reflection losses
become negligible at high density.
Discussion and possible experimental manifestations.—

Lead-induced damping can make a contribution to the net

FIG. 3. Plasmon damping rate γ (normalized by eigenfrequency
ω1) in a ballistic semiconductor coupled to leads vs the electron
transit frequency. Blue and green lines correspond to 1D and 2D
channels, respectively; the upper panel corresponds to perfectly
transmitting (Ohmic) contact, lower panel—to contact with
transmittance t ¼ 0.3. Dashed lines show the nonoscillatory part
of damping αðdÞtΩt.

FIG. 4. Plasmon reflection loss upon scattering at semiconduc-
tor-metal contact vs wave frequency. Blue and green lines
correspond to 1D (semiconductor nanotube [12]) and 2D (GaAs
quantumwell) plasmons; solid lines correspond to carrier densities
n ¼ 5 × 105 cm−1 in 1D and 5 × 1011 cm−2 in 2D; dashed lines—
to higher densities of 106 cm−1 in 1D and 1012 cm−2 in 2D. The
radius of the 1D conductor is a ¼ 5 nm, effective mass
m� ¼ 0.1m0, background dielectric constant κ ¼ 4. Inset shows
a schematic of lossy plasmon reflection at the contact.
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plasmon damping in any electrically controlled plasmon
resonator (e.g., in experiments with gate tuning of plas-
mons). The most pronounced effect is expected in plasmon-
enhanced photodetectors, where a semiconductor channel
acts as a plasmonic resonator and photocurrent generator
[13,14,37]. The plasmon lifetime in such detectors based on
bilayer graphene was inferred in Ref. [10] from the width of
gate-tunable photovoltage oscillations. The extracted life-
time γ−1 ∼ 0.3;…; 1 ps was well below the double trans-
port relaxation time (∼4 ps) predicted by Boltzmann
kinetic theory in an extended system. Moreover, the life-
time decreased at larger gate voltage (corresponding to
higher Fermi velocities). The latter trend is in agreement
with Eq. (8) for contact damping [38].
The magnitude of lead-induced damping under condi-

tions of Ref. [10] is estimated using Eq. (8) as 8vF=3πL ≈
1.7 × 1011 s−1 (taking vF ¼ 106 m=s and L ¼ 5 μm).
It is of the same order as “bulk damping” ð2τpÞ−1 ¼
2.5 × 1011 s−1. Yet, the net damping rate is even above
γcont þ ð2τpÞ−1, which signalizes on extra plasmon decay
mechanisms (radiative decay is a likely candidate).
Remarkably, measurements of plasmon-resonant detection
in submicron III-V transistors (L ¼ 150 nm) [13] also
reported a plasmon lifetime ∼200 fs smaller than the
expected 800 fs from mobility measurements. The magni-
tude of the measured lifetime is close to L=vF ∼ 150 fs
expected for the contact mechanism.
It looks like the contact mechanism of plasmon damping

sets a limit for the downscaling of plasmonic nanosystems.
A straightforward way for the reduction of such damping is
to induce weakly transparent barriers for electrons near the
contacts. One may therefore state that plasmonic structures
should benefit from high contact resistance and long
channels, which is contrary to requirements for conven-
tional high-frequency transistors. Another possible way to
reduce contact damping is to shift the carrier transport into
the hydrodynamic regime. In this regime, the path of a
single carrier to the contact would be prolonged due to
frequent electron-electron collisions [39], and so will the
plasmon lifetime. On the other hand, damping of plasmons
in a short ballistic channel should neutralize the ringing
response to pulses of the gate voltage. The latter was
considered as a limiting factor to the response time in
ultrascaled high-mobility transistors [40].
A slightly modified form of our damping mechanism

would be present in open plasmonic resonators without
metal contacts. An example of such a resonator comprises a
bounded gate in close proximity to an extended 2D system,
the edges of the gate acting as limiters for the plasmon field
[41–43]. Because of the transport nonlocality (emerging
ultimately from finite Fermi velocity), carriers do not
follow the on-site field and can escape the resonator.
The probability of carrier return from the extended channel
to the finite gated region tends to zero, which acts as
effective thermalization.

To conclude, we have shown that coupling of a semi-
conductor system to metal leads induces extra plasmon
damping. The damping appears to be due to the electron
penetration into the leads and subsequent thermalization.
The contribution of this mechanism to the damping rate in a
semiconductor of length L is roughly vF=L; the contribu-
tion to the plasmon reflection loss at the semiconductor-
metal interface is roughly the ratio of vF and the wave
phase velocity.

The authors thank Aleksandr S. Petrov for the rigorous
derivation of Eq. (6) using the perturbation theory for 2D
plasmons. The work was supported by the Grant No. 16-
19-10557 of the Russian Science Foundation.
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