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The exactly solvable Sachdev-Ye-Kitaev (SYK) model has recently received considerable attention in
both condensed matter and high energy physics because it describes quantummatter without quasiparticles,
while being at the same time the holographic dual of a quantum black hole. In this Letter, we examine SYK-
based charging protocols of quantum batteries with N quantum cells. Extensive numerical calculations
based on exact diagonalization for N up to 16 strongly suggest that the optimal charging power of our SYK
quantum batteries displays a superextensive scaling with N that stems from genuine quantum mechanical
effects. While the complexity of the nonequilibrium SYK problem involved in the charging dynamics
prevents us from an analytical proof, we believe that this Letter offers the first (to the best of our
knowledge) strong numerical evidence of a quantum advantage occurring due to the maximally entangling
underlying quantum dynamics.
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Introduction.—In the era of quantum supremacy for
quantum computing [1,2], research on the potential usefulness
of quantum mechanical resources (such as entanglement) in
energy science has led a consistent number of authors to
introduce and study “quantum batteries” (QBs). AQB [3,4] is
a system composed of N identical quantum cells, where
energy is stored and from which work can be extracted.
In 2013, Alicki and Fannes [3] suggested that “entan-

gling unitary controls”, i.e., unitary operations acting
globally on the state of the N quantum cells, lead to better
work extraction capabilities from a QB, when compared to
unitary operations acting on each quantum cell separately.
Hovhannisyan et al. [5] were the first to demonstrate that
entanglement generation leads to a speed-up in the process
of work extraction, thereby leading to larger delivered
power. Later on, the authors of Refs. [6,7] focused on the
charging (rather than the discharging) procedure and
identified two types of charging schemes: (i) the parallel
charging scheme in which each of the N quantum cells
is acted upon independently of the others and (ii) the
collective charging scheme, where global unitary opera-
tions (i.e., the entangling unitary controls of Ref. [3]) acting
on the full Hilbert space of the N quantum cells are
allowed. They were able to show that, in the collective
charging case and for N ≥ 2, the charging power of a QB is
larger than in the parallel scheme. This collective speed-up
(stemming from entangling operations) during the charging
procedure of a QB has been named “quantum advantage”.

In the quest for such quantum advantage and potential
laboratory implementations of QBs—based, e.g., on circuit
quantum electrodynamics and trapped-ion setups—
the abstract concepts of “quantum cell” and “entangling
operations” have been recently spelled out more explicitly
[8–27]. Different prototypes of QBs have been devised:
(i) Dicke models, where arrays of N qubits (i.e., the proper
battery) are coupled to a harmonic energy source [9–14],
(ii) deterministic spin chains [8,26,27], and (iii) disordered
spin chains [16,17]. These quantum cells can be charged by
switching on either direct [8,16,17] or effective [9–14]
interactions between them.
The authors of Refs. [8,9] proposed two concrete

implementations of the collective charging scheme, and
claimed the existence of a quantum advantage over the
parallel charging procedure. However, Julià-Farré et al.
[27] noticed that the Hamiltonians adopted in Refs. [8,9]
were not properly defined in the thermodynamic limit, in
the sense that their average values did not display exten-
sivity with N, but, rather, displayed a superlinear growth
with N. Moreover, the same authors were able to derive
a rigorous bound for the charging power, allowing
to distinguish between a genuine entanglement-induced
speed-up and spurious effects, given, e.g., by the lack of a
well-defined thermodynamic limit. In agreement with
Ref. [26], the conclusion of Ref. [27] is that all the
many-body QB models proposed in the literature so far
do not feature any genuine quantum advantage.
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Motivated by this literature, we propose a model of a QB
which (i) is properly defined in the thermodynamic limit
and (ii) unequivocally presents a genuine quantum advan-
tage. Our implementation relies on the Sachdev-Ye-Kitaev
(SYK) model [28–31], which has recently attracted a great
deal of attention for its exact solvability and profound
properties. The SYK model describes quantum matter with
no quasiparticles. It displays fast scrambling [32,33], has a
nonzero entropy density at vanishing temperature [34,35],
all its eigenstates exhibit volume-law entanglement entropy
[36,37], and is holographically connected to the dynamics
of AdS2 horizons of quantum black holes [29,30,38,39].
Proposals to realize the SYK Hamiltonian have been
recently put forward and rely on ultracold atoms [40],
graphene flakes with irregular boundaries [41], and topo-
logical superconductors [42,43].
Many-body QBs and figures of merit.—Consider a QB

made of N identical quantum cells (for an illustration, see
Fig. 1), which are governed by the following free and local
Hamiltonian (ℏ ¼ 1):

Ĥ0 ¼
XN
j¼1

ĥj: ð1Þ

At time t ¼ 0, the system is prepared in its ground state j0i,
physically representing the discharged battery. By suddenly
switching on a suitable interaction Hamiltonian Ĥ1 for a
finite amount of time τ (and switching off Ĥ0), one aims at
injecting as much energy as possible into the quantum
cells [6–8]. The time interval τ is called the charging time of
the protocol. The full model Hamiltonian can thus be
written as

ĤðtÞ ¼ Ĥ0 þ λðtÞðĤ1 − Ĥ0Þ; ð2Þ

where λðtÞ is a classical parameter that represents the
external control exerted on the system, and which
is assumed to be given by a step function equal to 1 for
t ∈ ½0; τ� and zero elsewhere. Such charging protocol is

experimentally feasible, e.g., in cold-atom setups [44],
where implementing sudden quenches is a standard pro-
cedure. Accordingly, denoting by jψðtÞi the state of the
system at time t, its total energy Etot

N ðtÞ ¼ hψðtÞjĤðtÞjψðtÞi
is constant for all values of t but t ¼ 0 and t ¼ τ (the
switching points).
The energy injected into the N quantum cells can be

expressed in terms of the mean local energy at the end of
the protocol, ENðτÞ ¼ hψðτÞjĤ0jψðτÞi. In writing the
previous equation, we have set to zero the ground-state
energy h0jĤ0j0i. Other crucial figures of merit are the
average charging power PNðτÞ ¼ ENðτÞ=τ and its optimal
value,

PNðτ�Þ ¼ max
τ>0

PNðτÞ; ð3Þ

obtained at time τ�. In the following, we will be mainly
interested in the scaling of the optimal charging power
PNðτ�Þ with the number N of quantum cells.
SYK-based charging protocols.—We assume each quan-

tum cell to be a spin-1=2 system. In the absence of charging
operations, the system is described by the noninteracting
Hamiltonian (1), with ĥj ¼ ω0σ̂

y
j=2. Here, ω0 > 0 repre-

sents a magnetic field strength (with units of energy) and σ̂αj
(α ¼ x, y, z) are the Pauli matrices. The battery energy
ENðτÞ will be measured in units of the energy scale ω0. At
time t ¼ 0, the quantum cells are initialized in the ground
state of Ĥ0, j0i ¼⊗N

j¼1 j↓ðyÞij, where σ̂yj j↓ðyÞij ¼ −j↓ðyÞij.
For the charging Hamiltonian Ĥ1, we use the complex

SYK (c-SYK) [30,45,46] model Hamiltonian:

Ĥc-SYK
1 ¼

XN
i;j;k;l¼1

Ji;j;k;lĉ
†
i ĉ

†
j ĉkĉl; ð4Þ

where ĉ†j (ĉj) is a spinless fermionic creation (annihilation)
operator [47]. This has to be understood in its
spin-1=2 representation, which is obtained by the
Jordan-Wigner transformation ĉ†j ¼ σ̂þj ðΠj−1

m¼1σ̂
z
mÞ, where

σ̂�j ≡ ðσ̂xj � iσ̂yjÞ=2 [48]. The couplings Ji;j;k;l are zero-
mean Gaussian-distributed complex random variables, with
variance hhJ2i;j;k;lii ¼ J2=N3, satisfying Ji;j;k;l ¼ J�k;l;i;j
and Ji;j;k;l ¼ −Jj;i;k;l ¼ −Ji;j;l;k. In the following, we
average any quantity of interest O over the distribution
of fJi;j;k;lg, and denote by hhOii the averaged value,
i.e., hhOii≡ R

PðfJi;j;k;lgÞOðfJi;j;k;lgÞdfJi;j;k;lg.
We emphasize that our choice of battery and charging

Hamiltonians is such that ½Ĥ0; Ĥ1� ≠ 0, a condition which
ensures energy injection into the QB by the charging
protocol (2). Note, finally, that the Hamiltonian in Eq. (4)
is invariant under particle-hole symmetry (PHS) in the
thermodynamic limit N → ∞. Extra terms, however, need
to be added to it in order to enforce PHS at any finite N [45]:

tτ0

FIG. 1. The charging protocol of a QB made of N spin-1=2
units, described by the Ĥ0 in Eq. (1). At time t < 0, the battery is
fully discharged. In the time interval 0 < t < τ, the interacting
charging Hamiltonian Ĥ1 is switched on, and energy is injected
via the quench. Finally, at time τ, interactions are switched off and
Ĥ0 is switched back on, so that the stored energy ENðτÞ is
conserved thereafter.
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Ĥc-SYK ðPHSÞ
1 ¼ Ĥc-SYK

1 þ 1

2

XN
i;j;k;l¼1

Ji;j;k;l

× ðδi;kĉ†j ĉl − δi;lĉ
†
j ĉk − δj;kĉ

†
i ĉl þ δj;lĉ

†
i ĉkÞ:
ð5Þ

Hereafter, we will always use this version of the c-SYK
model. We have, however, checked that our main findings do
not qualitatively change if PHS is not enforced and Eq. (4),
rather than Eq. (5), is used as charging Hamiltonian.
In the following, we will also consider charging

Hamiltonians based on a bosonic version of the SYK
model (b-SYK) [45]:

Ĥb-SYK
1 ¼

XN
i;j;k;l¼1

J̄i;j;k;lb̂
†
i b̂

†
j b̂kb̂l; ð6Þ

where b̂†j (b̂j) creates (annihilates) a hard-core boson. The

following relations are obeyed: fb̂j;b̂†jg¼1 and ½b̂i; b̂j�¼0

for i ≠ j. Hence, b̂†j can be directly written in its spin

representation as b̂†j ¼ σþj . Similarly to Ji;j;k;l, the quan-
tities J̄i;j;k;l in Eq. (6) are random, Gaussian-distributed
variables, with variance hhJ̄2i;j;k;lii ¼ J2=N3, satisfying
J̄i;j;k;l ¼ J̄�k;l;i;j and J̄i;j;k;l ¼ J̄j;i;k;l ¼ J̄i;j;l;k (in order to
comply with the bosonic commutation rules of the model).
For PHS to hold, we enforce the site indices i, j, k, l in
Eq. (6) to be all different [45]. Note that the dependence of
the variance of the couplings Ji;j;k;l and J̄i;j;k;l on the inverse
third power of N ensures that all our SYK charging
Hamiltonians are well defined in the thermodynamic limit.
Indeed, their average values scale extensively with N [51].
Finally, we will also examine a parallel charging protocol

[6,7] based on the following Hamiltonian:

Ĥk
1 ¼ K

XN
j¼1

σ̂xj : ð7Þ

In this case, each of the N quantum cells is acted upon
independently of the others and no entanglement is
generated [27]. The charging protocol based on Ĥk

1 will
therefore serve as reference model, to be compared against
c-SYK and b-SYK charging models.
Microscopy of the charging dynamics in energy space.—

As an indicator of the speed of the dynamics, we start by
looking at the time evolution of the energy-level occupa-
tions. Consider the spectral decomposition of Hamiltonian
(1): Ĥ0 ¼

P
N
k¼0 ϵk

P
i jk; iihk; ij, where ϵk ¼ kω0 denote

its eigenvalues and the index i accounts for the degenerate
eigenvectors. We are interested in the dynamics of the
populations:

pkðτÞ ¼
X
i

jhk; ijψðτÞij2: ð8Þ

Figure 2 displays pkðτÞ for the three charging Hamiltonians
mentioned above: c-SYK [Fig. 2(a)], b-SYK [Fig. 2(b)],
and parallel [Fig. 2(c)]. While in the latter two cases the
charging protocol generates a dynamics that is clearly local
in energy space, this is not the case for the c-SYK model.
This charging model generates a nonlocal population
dynamics in energy space, which manifests as a sudden
macroscopic population of excited levels. Indeed, after an
ultrashort “thermalization” time [52], a central band of
excited energy levels appears uniformly populated. (Further
details on the thermalization properties of c-SYK QBs are
provided in Ref. [48].) This nonlocality is a direct reali-
zation of the global charging dynamics envisioned by the
authors of Ref. [6]. Recurrences appearing in the charging
dynamics highlighted in Fig. 2(c) witness the integrability
of the parallel Hamiltonian in Eq. (7), which is absent in the
SYK models.
Power, bounds, and quantum advantage.—Quantitative

conclusions on the charging performances of SYK QBs,
compared to those of other reference many-body QBs, can
be drawn from the analysis of the optimal power PNðτ�Þ in
Eq. (3) and its scaling with N. Specifically, a rigorous

(a) (b) (c)

FIG. 2. Dynamics of the dimensionless population pkðτÞ of the QB energy levels as a function of time τ (in units of 1=J) and the level
index k for three different charging protocols: c-SYK (a), b-SYK with J̄ ¼ J (b), and parallel with K ¼ J (c). Data in (a) and
(b) correspond to a single realization of disorder in the couplings Ji;j;k;l and J̄i;j;k;l.
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certification of the quantum origin of the charging advan-
tage of the c-SYK model can be achieved by considering
the following bound [27]:

PNðτÞ ≤ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔτĤ

2
0ΔτĤ

2
1

q
; ð9Þ

where ΔτĤ
2 ≡ ð1=τÞ R τ

0 dt½hĤ2it − ðhĤitÞ2� and hÔit ≡
hψðtÞjÔjψðtÞi. Here, ΔτĤ

2
1 represents the charging speed

in the Hilbert space: larger values of such quantity
correspond to trivial increases of the charging speed. In
contrast, ΔτĤ

2
0 is connected with the distance traveled in

the Hilbert space. An enhancement of it can be linked to
shortcuts in the Hilbert space: starting from a pure state and
going through highly entangled states, it is possible to
reduce the length of the trajectory in such space, con-
sequently enhancing the charging power [27]. This is a
genuine quantum effect, with no classical analog. Any
increase of the average optimal power linked to ΔτĤ

2
0 can

be considered as the smoking gun of a genuine quantum
advantage, unreproducible by classical dynamics. A
detailed derivation of the bound (9) is provided in Ref. [48].
If the battery Hamiltonian Ĥ0 is made of a sum of

local terms, as in Eq. (1), it is possible to write ΔτĤ
2
0 as

ΔτĤ
2
0 ¼ Δloc

τ Ĥ2
0 þ Δent

τ Ĥ2
0, with [27]

Δloc
τ Ĥ2

0 ≡ 1

τ

Z
τ

0

dt
X
i

½hĥ2i it − hĥii2t �; ð10Þ

Δent
τ Ĥ2

0 ≡ 1

τ

Z
τ

0

dt
X
i≠j

½hĥiĥjit − hĥiithĥjit�: ð11Þ

The quantity (10), being a sum of local terms, scales
linearly with N (i.e., is extensive) by construction. On the
other hand, Δent

τ Ĥ2
0, whose explicit form can be immedi-

ately linked to correlations between sites i and j, may
display a superlinear scaling with N. Because of the
nonlinearity of the bound (9), which applies to a
single disorder realization, averaging over disorder is
not straightforward. Through the Cauchy-Schwarz in-
equality, though, it is possible to rewrite it as hhPNðτÞii≤
2hh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔτĤ

2
0ΔτĤ

2
1

q
ii≤2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hhΔτĤ

2
0iihhΔτĤ

2
1ii

q
, meaning that

one can separately study the averaged quantities hhΔτĤ
2
0ii

and hhΔτĤ
2
1ii. Here we are interested in the scaling at the

optimal time τ�; thus we focus on

hhPNðτ�Þii ≤ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hhΔτ�Ĥ

2
0iihhΔτ�Ĥ

2
1ii

q
: ð12Þ

Since the battery energy is measured in units of ω0 and time
in units of 1=J, the averaged charging power hhPNðτ�Þii is
measured in units of ω0J. Given this choice, we specify the
energy scales of the b-SYK and parallel charging protocols
by setting J̄ ¼ K ¼ J [53].

Figure 3(a) shows the relevant quantities for the
bound (12), for a c-SYK QB. While hhΔτ�Ĥ

2
1ii is extensive

in N, we observe that both hhΔτ�Ĥ
2
0ii and hhΔent

τ� Ĥ
2
0ii

display a superlinear scaling with N, which is compatible
with a quadratic growth. This means that, during the
time evolution, the c-SYK charging Hamiltonian generates
the maximum possible nonlocality between the quantum
cells, in the form of N-partite entanglement [27]. This,
together with Eq. (12), suggests a superlinear scaling with
N of the optimal charging power,

(a)

(b)

FIG. 3. (a) The relevant quantities for the bound (12), evaluated
at the optimal time τ�, and averaged over disorder: time-averaged
variances hhΔτ�Ĥ

2
0ii (blue triangles, in units of ω2

0), hhΔτ�Ĥ
2
1ii

(green squares, in units of J2), hhΔent
τ� Ĥ

2
0ii (black circles, in units

of ω2
0), as functions ofN. Dashed curves denote linear (green) and

quadratic (blue, black) fits to the numerical results. The four data
points corresponding to the smallest N have been discarded from
the fits. (b) The optimal power (red) hhPNðτ�Þii and the quantity
in the right-hand side of Eq. (12) (blue) are plotted as functions of
N, in a log-log scale and in units of ω0J. Dashed lines correspond
to power laws ∼N1þk (k ¼ 0.5, red; k ¼ 0, orange) and are
plotted as guides to the eye. Data in this figure refer to the c-SYK
QB model, and have been obtained after averaging over Ndis ¼
103 (for N ¼ 4;…; 10), 5 × 102 (for N ¼ 11, 12), and 102 (for
N ¼ 13;…; 16) instances of disorder in the couplings fJi;j;k;lg.
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hhPNðτ�Þii ∼ N1þk; with k > 0; ð13Þ

where k ≈ 0.5. For the first time in the literature on QB
models [8–27], we are thus in a situation where the power
enhancement is linked to ΔτĤ

2
0, a fact that hints at a

quantum advantage (i.e., advantage over any classical
battery) displayed by the c-SYK model with respect to
the charging task. Further details on the comparison
between quantum and classical many-body batteries are
given in Ref. [48].
The left- and right-hand side members of the inequality

(12) are displayed in Fig. 3(b), red and blue data,
respectively. We clearly see a superlinear scaling with N
(k ¼ 0.5 corresponds to the red dashed straight line). We
have also considered the b-SYK and parallel charging
models, showing that, in both cases, all the quantities
hhΔτ�Ĥ

2
0ii, hhΔτ�Ĥ

2
1ii, and hhΔent

τ� Ĥ
2
0ii are extensive in N

[48]. In agreement with the results shown in Figs. 2 and 3,
we thus conclude that these two QB models do not display
any genuine quantum advantage.
We finally recall that optimal charging powers that scale

faster than N have been found in Refs. [8,9]. Unfortunately,
such superlinear scalings do not stem from ΔτĤ

2
0 but rather

from ΔτĤ
2
1, and therefore have no quantum origin [27].

The fact that the Hamiltonians used in Refs. [8,9]
are not properly defined in the thermodynamic limit
is ultimately at the origin of the spurious super-
extensive scaling of the optimal charging power. This is
explicitly shown in Ref. [48] for Dicke QBs. In this
Letter, we have bypassed this problem by choosing the
appropriate scaling [28–31,45,46] with N of the
variance hhJ2i;j;k;lii ¼ J2=N3 of the c-SYK coupling
parameters.
Alternatively, another strategy to rule out any

spurious effect on the optimal charging power is to use
a “renormalization" approach that consists in dividing the
charging Hamiltonian by its operator norm [48]. This
procedure allows for a fair comparison between different
QB models [7]. In agreement with the results illustrated
above, we have found a clear increase with N of the
optimal charging power only for the renormalized c-SYK
Hamiltonian [48].
In the future, it will be interesting to study SYK-type

models in the context of heat engines [54,55], where
minimizing timescales is also of central importance.
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