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We investigate the ground-state properties of quantum particles interacting via a long-range repulsive
potential VσðxÞ ∼ 1=jxj1þσ (−1 < σ) or VσðxÞ ∼ −jxj−1−σ (−2 ≤ σ < −1) that interpolates between the
Coulomb potential V0ðxÞ and the linearly confining potential V−2ðxÞ of the Schwinger model. In the
absence of disorder the ground state is a Wigner crystal when σ ≤ 0. Using bosonization and
the nonperturbative functional renormalization group we show that any amount of disorder suppresses
the Wigner crystallization when −3=2 < σ ≤ 0; the ground state is then a Mott glass, i.e., a state that has a
vanishing compressibility and a gapless optical conductivity. For σ < −3=2 the ground state remains a
Wigner crystal.
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Introduction.—The ground state of a one-dimensional
quantum fluid with short-range interactions is generically a
Luttinger liquid. This corresponds to a metallic state, which
is, however, not described by Landau’s Fermi liquid theory,
for fermions and to a superfluid state, but without Bose-
Einstein condensation, for bosons [1]. In the presence of
disorder, the ground state either remains a Luttinger liquid
or becomes an Anderson insulator (fermions) or a Bose
glass (bosons), i.e., an insulating state with a vanishing dc
conductivity, a gapless optical conductivity and a nonzero
compressibility [2–4].
Whether one-dimensional disordered quantum fluids can

exhibit other phases besides the Luttinger liquid and the
Anderson-insulator or Bose-glass phases has been the
subject of debate for a long time. In particular, several
works have addressed the existence of a Mott-glass phase
but no firm positive conclusion has been reached so far. The
Mott glass is intermediate between the Mott insulator and
the Anderson insulator or Bose glass, and is characterized
by a vanishing compressibility and a gapless conductivity;
it would result from the coexistence of gapped single-
particle excitations (which imply a vanishing compressi-
bilty) and gapless particle-hole excitations (hence the
absence of gap in the conductivity).
On the one hand it has been proposed that the interplay

between disorder and a commensurate periodic potential
could stabilize a Mott glass [5,6], but this conclusion, when
the interactions are short range, has been challenged [7,8].
On the other hand, the existence of a Mott glass in a
disordered system with linearly confining interactions medi-
ated by a (1þ 1)-dimensional gauge field (disordered
Schwinger model) has been predicted by the Gaussian
variational method [9] and the perturbative functional
renormalization group (FRG) [6], but this conclusion is in
conflict with a recent study based on the nonperturbative
FRG [10]. The only system that seems to certainly satisfy the

basic properties of the Mott glass is the one-dimensional
electron gas with (unscreened) Coulomb interactions [11].
In this Letter we determine the phase diagram of a one-

dimensional quantum fluid where the particles interact with
both a short-range potential and a long-range potential

VσðxÞ ¼

8><
>:

e2

ðx2þa2Þð1þσÞ=2 if − 1 < σ;

−e2 ln jx=aj if σ ¼ −1;
−e2jxj−1−σ if − 2 ≤ σ < −1

ð1Þ

(a is a short-distance cutoff [12]) that interpolates between
the Coulomb potential V0ðxÞ and the linearly confining
potential V−2ðxÞ of the Schwinger model [13,14]. Although
our conclusions hold for both fermions and bosons, we use
the terminology of the Bose fluid in the following.
Our main results are summarized in Fig. 1. The ground

state of the pure fluid is a Luttinger liquid for σ > 0 (in that

(b)

(a)

FIG. 1. Phase diagram of a pure (a) or disordered (b) one-
dimensional Bose fluid with short-range interactions and a long-
range interaction potential VσðxÞ [Eq. (1)]. KLL denotes the
Luttinger parameter associated with short-range interactions; it
determines the ground state when σ > 0 (in that case Vσ is
effectively short range) but plays no important role for long-range
interactions.
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case Vσ is effectively short range) and a Wigner crystal for
σ ≤ 0 as first shown by Schulz [15–19] in the case of
Coulomb interactions (true long-range crystalline order
however occurs only for σ < 0). In the presence of disorder,
the Wigner crystal is stable if the interactions are suffi-
ciently long range, i.e., σ < −3=2, but is unstable against a
Mott glass when −3=2 < σ ≤ 0. Apart from the vanishing
compressibility, we find that the Mott glass is described by
a fixed point of the FRG flow equations similar to the one
describing the Bose-glass phase. Besides the finite locali-
zation length and the gapless conductivity, this fixed point
is characterized by a renormalized disorder correlator that
assumes a cuspy functional form whose origin lies in the
existence of metastable states associated with glassy
properties [20,21].
Model and FRG formalism.—The low-energy

Hamiltonian of the pure Bose fluid in the presence of
the long-range interaction potential VσðxÞ can be written as

Ĥ ¼ ĤLL þ
1

2

X
q

ρ̂ð−qÞVσðqÞρ̂ðqÞ; ð2Þ

where ρ̂ðqÞ and VσðqÞ are the Fourier transforms of the
density operator ρ̂ðxÞ and VσðxÞ, respectively, and a UV
momentum cutoff Λ is implied. The Luttinger-liquid
Hamiltonian ĤLL includes the kinetic energy of the
particles and their short-range interactions. In the bosoni-
zation formalism [1],

Ĥ ¼
X
q

vLLq2

2π

�
1

KLL
φ̂ð−qÞφ̂ðqÞ þ KLLθ̂ð−qÞθ̂ðqÞ

�

þ 1

2π2
X
q

q2VσðqÞφ̂ð−qÞφ̂ðqÞ; ð3Þ

where θ̂ is the phase of the boson operator
ψ̂ðxÞ ¼ eiθ̂ðxÞρ̂ðxÞ1=2. φ̂ is related to the density operator via

ρ̂ðxÞ ¼ ρ0 −
∂xφ̂ðxÞ

π
þ 2

X∞
m¼1

ρ2m cos½2mπρ0x − 2mφ̂ðxÞ�;

ð4Þ

where ρ0 is the average density and the ρ2m’s are nonuni-
versal parameters that depend on microscopic details. φ̂ and
θ̂ satisfy the commutation relations ½θ̂ðxÞ; ∂yφ̂ðyÞ� ¼
iπδðx − yÞ. vLL denotes the velocity of the sound mode
when Vσ ¼ 0 and the dimensionless parameter KLL, which
encodes the strength of the short-range interactions, is the
Luttinger parameter.
In the absence of long-range interactions (VσðqÞ ¼ 0), the

system is a Luttinger liquid, characterized by a non-
zero compressibility κ ¼ KLL=πvLL and a nonzero
charge stiffness or Drude weight [defined as the Dirac
peak δðωÞ in the conductivity] D ¼ vLLKLL [22].

The superfluid correlation function hψ̂ðxÞψ̂†ð0Þi ∼
1=jxj1=2KLL and the density correlation function
hρ̂ðxÞρ̂ð0Þijqj∼2πρ0 ∼cosð2πρ0xÞ=jxj2KLL decay algebraically;
the former dominates for KLL > 1=2, the latter for KLL <
1=2 (all other correlation functions are subleading).
The long-range interaction potential VσðqÞ can be simply

taken into account by introducing momentum-dependent
velocity and Luttinger parameter defined by

vðqÞKðqÞ ¼ vLLKLL;
vðqÞ
KðqÞ ¼

vLL
KLL

þ VσðqÞ
π

: ð5Þ

The long-range potential in Eq. (3) can then be simply taken
into account by replacing, in the Luttinger-liquid
Hamiltonian, vLL and KLL by vðqÞ and KðqÞ [1]. For
σ > 0, since VσðqÞ has a finite limit for q → 0, vðq ¼ 0Þ
and Kðq ¼ 0Þ are finite; this essentially leads to a mere
renormalization of vLL and KLL and the ground state remains
a Luttinger liquid. By contrast, for σ ≤ 0, in the small-
momentum limit VσðqÞ ∼ jqjσ so that vðqÞ ∼ jqjσ=2 and
KðqÞ ∼ jqj−σ=2 are determined by the long-range part of
the interactions (for σ ¼ 0, jqjσ should be interpreted as
− ln jqj), which drastically modifies the ground state and the
low-energy properties. The sound mode ω ¼ vLLjqj of the
Luttinger liquid is replaced by a collective mode with
dispersion ω¼vðqÞjqj∼jqj1þσ=2 (ω∼jqj ffiffiffiffiffiffiffiffiffiffiffiffiffi

−lnjqjp
for σ ¼ 0)

and the compressibility κ ¼ limq→0 KðqÞ=πvðqÞ vanishes.
Algebraic superfluid correlations are suppressed whereas
translation invariance is spontaneously broken by the
formation of a Wigner crystal with period 1=ρ0:
hρ̂ðq ¼ 2mπρ0Þi ¼ ρ2mhe2miφ̂ðxÞi ≠ 0 (m integer); for
σ ¼ 0, the order is only quasi-long-range [23]. The
Wigner crystal has a nonzero charge stiffness D ¼
limq→0 vðqÞKðqÞ ¼ vLLKLL independent of the long-range
interactions.
From now on, we restrict ourselves to genuine long-

range interactions, i.e., σ ≤ 0. A weak disorder contributes
to the Hamiltonian a term

Ĥdis ¼
Z

dx

�
−
1

π
η∂xφ̂þ ρ2½ξ�e2iφ̂ þ H:c:�

�
; ð6Þ

where we distinguish the so-called forward (η) and back-
ward (ξ) scatterings; their Fourier components are near 0
and �2πρ0, respectively [2,3]. The forward scattering
potential η can be eliminated by a shift of φ̂, i.e., φ̂ðxÞ →
φ̂ðxÞ þ αðxÞ with a suitable choice of αðxÞ, and is therefore
discarded in the following (it does, however, play a role in
some of the correlation functions discussed below). The
average over disorder can be done using the replica method,
i.e., by considering n copies of the model. Assuming
that ξðxÞ is Gaussian distributed with zero mean
and variance ξ�ðxÞξðx0Þ ¼ ðD=ρ22Þδðx − x0Þ (an overline
indicates disorder averaging), we obtain the following
low-energy Euclidean action (after integrating out the
field θ),
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S½fφag�¼
1

2

X
Q;a

φað−QÞ
�
Zxq2fqþ

ω2

πvLLKLL

�
φaðQÞ

−D
X
a;b

Z
dx

Z
β

0

dτdτ0cos½2φaðx;τÞ−2φbðx;τ0Þ�;

ð7Þ

where φaðx; τÞ is a bosonic field with τ ∈ ½0; β� an
imaginary time (β ¼ 1=T → ∞), and a; b ¼ 1 � � � n are
replica indices. We use the notation Q ¼ ðq; iωÞ with
ω≡ ωn ¼ 2nπT (n integer) a Matsubara frequency. In
Eq. (7), Zxfq ¼ vðqÞ=πKðqÞ and in the following we use
the low-momentum approximation Zxfq ≃ vLL=πKLL þ
Zxjqjσ (or Zxfq ≃ vLL=πKLL þ Zx ln jΛ=qj for σ ¼ 0) valid
when jqja ≪ 1. We can now identify two characteristic
length scales. The first one, Lx ¼ ðZxπKLL=vLLÞ1=σ is a
crossover length beyond which the long-range potential Vσ

dominates over the short-range interactions. The second
one, the Larkin length Lc ∼ ðZ2

x=DÞ1=ð3þ2σÞ, signals the
breakdown of perturbation theory with respect to disorder
[24]. The divergence of Lc when σ → −3=2 suggests, as
will be confirmed below, that the Wigner crystal is stable
when σ < −3=2.
Most physical quantities can be obtained from the

partition function Z½fJag� or, equivalently, from the effec-
tive action (or Gibbs free energy)

Γ½fϕag� ¼ − lnZ½fJag� þ
X
a

Z
dx

Z
β

0

dτJaϕa; ð8Þ

defined as the Legendre transform of the free
energy − lnZ½fJag�. Here Ja is an external source
which couples linearly to the field φa and allows us to
obtain the expectation value ϕaðx; τÞ ¼ hφaðx; τÞi ¼
δ lnZ½fJfg�=δJaðx; τÞ. We compute Γ½fϕag� using a
Wilsonian nonperturbative FRG approach [25–27], where
fluctuation modes are progressively integrated out. In
practice we consider a scale-dependent effective action
Γk½fϕag� which incorporates fluctuations with momenta
(and frequencies) between a running momentum scale k
and the UV scale Λ. The effective action of the original
model, Γk¼0½fϕag�, is obtained when all fluctuations have
been integrated out whereas ΓΛ½fϕag� ¼ S½fϕag�. Γk
satisfies a flow equation which allows one to obtain
Γk¼0 from ΓΛ but which cannot be solved exactly [28–30].
Following previous FRG studies of one-dimensional

disordered boson systems [10,20,21,31], we consider the
following truncation of the effective action,

Γk½fϕag� ¼
X
a

Γ1;k½ϕa� −
1

2

X
a;b

Γ2;k½ϕa;ϕb�; ð9Þ

with the ansatz

Γ1;k½ϕa� ¼
1

2

X
Q

ϕað−QÞ½Zxq2fq þ ΔkðiωÞ�ϕaðQÞ;

Γ2;k½ϕa;ϕb� ¼
Z

dx
Z

β

0

dτdτ0Vk½ϕaðx; τÞ − ϕbðx; τ0Þ�;

ð10Þ

and the initial conditions ΔΛðiωÞ ¼ ω2=πvLLKLL and
VΛðuÞ ¼ 2D cosð2uÞ. The π-periodic function VkðuÞ can
be interpreted as a renormalized second cumulant of the
disorder. The form of the ansatz (10) is strongly constrained
by the so-called statistical tilt symmetry (STS) [21,39]. In
particular, the term Zxq2fq is not renormalized and no other
space-derivative terms can be generated. The self-energy
ΔkðiωÞ is a priori arbitrary but satisfies Δkðiω ¼ 0Þ ¼ 0.
It is convenient to define k-dependent velocity and
Luttinger parameter from Zx ¼ vk=πKkfk and ΔkðiωÞ ¼
Zxω

2fk=v2k þOðω4Þ. In the absence of disorder,
Γk½fϕag� ¼ S½fϕag� and one has vk ∼ f1=2k and Kk ∼
f−1=2k in agreement with the momentum-dependent quan-
tities vðqÞ and KðqÞ [Eq. (5)].
Γ1;k and Γ2;k contain all the necessary information to

characterize the ground state of the system. From the
disorder-averaged density-density correlation function

χρρðq; iωÞ ¼
q2=π2

Zxq2fq þ Δk¼0ðiωÞ
; ð11Þ

we deduce that the compressibility

κ ¼ lim
q→0

χρρðq; 0Þ ¼ lim
q→0

1

π2Zxfq
¼ 0 ð12Þ

vanishes so that the system remains incompressible in the
presence of disorder. The determination of the conductivity
σðωÞ ¼ limq→0ð−iω=q2Þχρρðq;ωþ i0þÞ requires us to
determine the self-energy ΔkðiωÞ whose low-frequency
behavior depends on VkðuÞ. Incidentally, the importance of
disorder is best characterized by the dimensionless disorder
correlator defined by δkðuÞ ¼ −K2

kV
00
kðuÞ=v2kk3. We refer to

the Supplemental Material for more details about the
implementation of the FRG approach and the derivation
of the flow equations for ΔkðiωÞ and δkðuÞ [32].
FRG flow and phase diagram.—By solving numerically

the flow equations, we find that for σ > −3=2 the flow
trajectories are attracted by a fixed point characterized by a
vanishing Luttinger parameter Kk ∼ k−σ=2þθ → 0 (Fig. 2).
The velocity behaves as vk ∼ kθþσ=2 and vanishes in the
limit k → 0 if σ > −2θ but diverges (as in the Wigner
crystal) if σ < −2θ. Whether the latter case actually occurs
(which requires θ < 3=4 since σ > −3=2 in the Mott glass)
depends on the value of θ which, for reasons explained in
Ref. [21], cannot be accurately determined from the flow
equations. The charge stiffness Dk ¼ vkKk ∼ k2θ vanishes
for k → 0 and the system is insulating.
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On the other hand, the disorder correlator δkðuÞ reaches a
nontrivial fixed point in the limit k → 0 when σ > −3=2
(see Fig. 3):

δ�ðuÞ ¼ 3þ 2σ

6πl̄2

��
u −

π

2

�
2

−
π2

12

�
ðu ∈ ½0; π�Þ; ð13Þ

where l̄2 is a nonuniversal constant. Apart from the σ-
dependent prefactor, δ�ðuÞ is identical to the fixed-point
solution in the Bose-glass phase [20,21]. It exhibits cusps at
u ¼ nπ (n integer). For any nonzero momentum scale this
cusp singularity is rounded into a quantum boundary layer
(QBL) as shown in Fig. 3: For u near nπ, δkðnπÞ − δkðuÞ ∝
ju − nπj except in a boundary layer of size ju − nπj ∼ Kk,
and the curvature jδ00kðnπÞj ∼ 1=Kk ∼ k−θþσ=2 diverges
when k → 0. The cusp singularity and the QBL describes
the physics of rare low-energy metastable states and their
coupling to the ground state by quantum fluctuations

[20,21]. This is characteristic of disordered systems with
glassy properties [40].
The behavior of the self-energy ΔkðiωÞ when σ > −3=2

is also reminiscent of the Bose-glass phase. For small k,
there is a frequency regime, where ΔkðiωÞ is compatible
with a linear dependence Aþ Bjωj, which implies that the
real part of the conductivity,

σðωÞ ¼ −
iω

π2Δk¼0ðωþ i0þÞ
¼ 1

πA2
ð−iAωþ Bω2Þ þOðω3Þ; ð14Þ

vanishes as ω2 [41]. However, when 2 − θ þ 3σ=2
becomes negative, which necessarily occurs when σ varies
between 0 and −3=2 since θ > 0, the constant A grows and
seems to diverge for k → 0. This could indicate that the
conductivity vanishes with an exponent larger than 2:
ℜ½σðωÞ� ≪ ω2 [32]. Thus, for σ > −3=2, we essentially
recover the physical properties of the Bose-glass phase with
the notable exception that the compressibility vanishes: The
ground state is a Mott glass.
In the Mott glass, the backward scattering destroys

the long-range crystalline order: hρ̂ðq ¼ 2πρ0Þi ¼
ρ2he2iφ̂ðxÞi ¼ 0, and the corresponding correlation function
χðxÞ ¼ he2iφ̂ðxÞe−2iφ̂ð0Þi decays algebraically. Taking into
account the forward scattering, we find [32]

χðxÞ ∼
8<
:

e−Cjxj1þ2σ

jxjγσ if σ > −1=2;
1

jxjγσ if σ < −1=2
ð15Þ

(C is a positive constant), where γσ ¼ π2ð3þ 2σÞ=
9þ θ − σ=2. Forward scattering is relevant for σ > −1=2
and yields an exponential suppression of crystalline order
but becomes irrelevant for σ < −1=2 [32].
When σ < −3=2, both forward and backward scatterings

are irrelevant and the Wigner crystal is stable against a
weak disorder as shown by the flow trajectories in Fig. 2.
Thus, for sufficiently long-range interactions, the Wigner
crystal is sufficiently rigid to survive the detrimental effect
of disorder. The case σ ¼ −2 (disordered Schwinger
model) requires a separate study since Zxq2fq does not
vanish for q → 0. Although there are contradicting results
in the literature regarding the possible existence of a Mott
glass in the disordered Schwinger model [6,9,10], our
results regarding the stability of the Wigner crystal against
disorder when −2 < σ < −3=2 are in line with a recent
FRG study predicting the absence of a Mott glass when
σ ¼ −2, the ground state being similar to a Mott insulator
(vanishing compressibility and gapped conductivity) [10].
The phase diagram of a one-dimensional disordered

Bose fluid with the long-range interaction potential Vσ

[Eq. (1)] is shown in Fig. 1. In the absence of disorder, the
ground state is a Luttinger liquid for effectively short-range

FIG. 2. Flow trajectories ½Kk; δkð0Þ� for various values of σ. The
solid and dash-dotted lines are obtained for different values of the
disorder strength. The red solid line for −3=2 < σ ≤ 0 corre-
sponds to the Mott-glass fixed point defined by K� ¼ 0 and δ�ðuÞ
[Eq. (13)]. Disorder is irrelevant for σ < −3=2 and the solid green
line corresponds to the Wigner-crystal fixed point.

FIG. 3. Disorder correlator δkðuÞ for various values of k and
σ ¼ 0 (left), σ ¼ −0.5 (right). The green dash-dotted curve shows
the initial condition δΛðuÞ ∝ cosð2uÞ and the red dashed one the
fixed-point solution (13).
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interactions (σ > 0) and a Wigner crystal for genuine long-
range interactions (σ ≤ 0). The Luttinger liquid is unstable
against infinitesimal disorder and becomes a Bose glass
when the Luttinger parameter satisfies KLL < 3=2 [with
KLL ¼ limq→0KðqÞ including the effect of the potential
Vσ] [2,3]. On the other hand, disorder transforms the
Wigner crystal into a Mott glass when σ > −3=2. Some
of the physical properties of these various phases are
summarized in Table I.
Conclusion.—We have shown that a one-dimensional

disordered Bose fluid with long-range interactions exhibits
a rich phase diagram which includes the long-sought Mott-
glass phase. Since the Hamiltonian studied in this Letter also
describes the charge degrees of freedom of fermions, a similar
phase diagram is expected for a one-dimensional Fermi fluid.
On the experimental side, long-range interactions have

been realized in various cold-atom systems, e.g., trapped
ions [43–45] or dipolar quantum gases [46], and we may
hope that one-dimensional quantum fluids with long-range
interactions will be realized in the near future. Of particular
interest are cold-atom systems in an optical lattice and
using an optical cavity to realize the Hubbard model with
an additional infinite-range (cavity-mediated) interaction
[47,48]. In the presence of disorder this system, in one
dimension, would be described by the low-energy model
studied in this Letter. But the scaling of the long-range
interaction with the system size, the so-called Kac pre-
scription [49], prevents a direct comparison with the results
of this Letter [48]. On the other hand we note that the
Schwinger model has already been realized [50] and allows
for a check of our prediction regarding the stability of the
Wigner crystal when σ ¼ −2.

We thank N. Defenu, J. Beugnon, and P. Viot for useful
comments on the experimental realization of long-range
interactions in cold-atom systems.
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