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We present an effective static approximation (ESA) to the local field correction (LFC) of the electron gas
that enables highly accurate calculations of electronic properties like the dynamic structure factor Sðq;ωÞ,
the static structure factor SðqÞ, and the interaction energy v. The ESA combines the recent neural-net
representation by T. Dornheim et al., [J. Chem. Phys. 151, 194104 (2019)] of the temperature-dependent
LFC in the exact static limit with a consistent large wave-number limit obtained from quantumMonte Carlo
data of the on-top pair distribution function gð0Þ. It is suited for a straightforward integration into existing
codes. We demonstrate the importance of the LFC for practical applications by reevaluating the results of
the recent x-ray Thomson scattering experiment on aluminum by Sperling et al. [Phys. Rev. Lett. 115,
115001 (2015)]. We find that an accurate incorporation of electronic correlations in terms of the ESA leads
to a different prediction of the inelastic scattering spectrum than obtained from state-of-the-art models like
the Mermin approach or linear-response time-dependent density functional theory. Furthermore, the ESA
scheme is particularly relevant for the development of advanced exchange-correlation functionals in
density functional theory.
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Warm dense matter (WDM)—an extreme state of matter
characterized by high densities and temperatures—has
emerged as one of the most challenging frontiers of plasma
physics and material science [1–3]. These conditions occur
in many astrophysical objects such as in the interiors of
giant planets [4–6], in brown dwarfs [7,8], and in neutron
star crusts [9]. Moreover, they arise in inertial confinement
fusion capsules on their pathway toward ignition [10] and
are potentially relevant for the understanding of radiation
damage in both fission and fusion reactor walls [11].
Furthermore, they apply to the novel field of hot-electron
chemistry where the latter are used to accelerate chemical
reactions [12,13].
These applications have sparked a surge of activities in

experimental realizations [14] and diagnostics of WDM
conditions at intense light sources around the globe, such as
at the NIF [15], at SLAC [16], and at the European X-FEL
[17], which have led to several experimental breakthroughs
over the past years [18–23]. While all of these experimental
techniques rely on theoretical WDM models to extract
observables, an accurate theoretical understanding of
WDM is still missing [3,24].
More specifically, an accurate theoretical description of

WDM needs to take into account simultaneously
(i) Coulomb coupling effects, (ii) quantum effects, and
(iii) thermal excitations. In particular, WDM is character-
ized by rs ∼ θ ∼ 1, where rs ¼ ā=aB and θ ¼ kBT=EF are

the usual Wigner-Seitz radius and degeneracy temperature
[25]. Under these conditions, thermal density functional
theory (DFT) [26,27] has emerged as the workhorse of
WDM modeling due to its balance between computational
cost and accuracy in terms of an—at least formal—ab initio
treatment of the electrons. Despite its current success as a
useful technique for the numerical modeling of WDM
properties, there are potentially severe limitations for
further progress: (1) the accuracy of DFT results crucially
depends on an accurate exchange-correlation (XC) func-
tional and (2) the computational cost of DFT calculations is
too high for on-the-fly diagnostics and interpretation of
WDM experiments.
In this regard, the key quantity for WDM diagnostics is

the dynamic density response function [28,29],

χ½Gðq;ωÞ�ðq;ωÞ ¼ χ0ðq;ωÞ
1 − 4π

q2 ½1 −Gðq;ωÞ�χ0ðq;ωÞ
; ð1Þ

where χ0ðq;ωÞ denotes the density response of a non-
interacting (ideal) system and the dynamic local field
correction Gðq;ωÞ entails both the frequency and wave-
number dependence of XC effects. For example, setting
Gðq;ωÞ ¼ 0 in Eq. (1) leads to the well-known random
phase approximation (RPA). An accurate knowledge of
Eq. (1) beyond the RPA is paramount for the interpretation
of x-ray Thomson scattering (XRTS) experiments [30,31]
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that presently constitutes the arguably best diagnostics of
WDM experiments.
In addition, the LFC is directly proportional to the XC

kernel in time-dependent DFT [32], and, moreover, can be
used for the construction of an advanced, nonlocal XC
functional for thermal DFT based on the adiabatic-
connection formula and the fluctuation-dissipation theorem
[33–35].
Recently, Dornheim and co-workers have presented the

first accurate representation of Gðq;ωÞ based on ab inito
path-integral Monte Carlo (PIMC) data for the uniform
electron gas (UEG) at WDM conditions [36–38]. While a
full representation of Gðq;ωÞ covering the entire WDM
regime currently remains beyond reach, they have shown
that it is often sufficient to replace the dynamic LFC in
Eq. (1) by its static limit, i.e., GðqÞ ¼ Gðq; 0Þ. It has,
indeed, been demonstrated that this static approximation
χstaticðq;ωÞ ¼ χ½Gðq; 0Þ�ðq;ωÞ yields highly accurate
results for the dynamic structure factor (DSF) Sðq;ωÞ
and related quantities [39]. This is a key finding, as
GðqÞ is available as a neural-net representation [40] that
covers the entire relevant range of rs and θ.
Yet, as we demonstrate in this Letter, the static approxi-

mation induces a significant bias for medium to large wave
numbers q, which in turn makes χstaticðq;ωÞ unsuitable for
many applications like the construction of advanced XC
functionals for DFT. To overcome this severe limitation, we
present the effective static approximation (ESA) to the LFC
given in Eq. (6). It is constructed on the basis of the
machine-learning representation ofGðqÞ for small q and, in
addition, obeys the consistent asymptotic behavior in the
limit of large wave-numbers [41]. Thus, the ESA yields
remarkably accurate results for electronic properties like
Sðq;ωÞ, its normalization SðqÞ [Eq. (3)], and the interaction
energy v [Eq. (4)] over the entire WDM regime without any
additional computational cost compared to the RPA.
The ESA is, furthermore, directly applicable as a practical

method for the rapid diagnostics of XRTS signals. In Fig. 4,
we demonstrate its utility for the recent XRTS experiment on
isochorically heated aluminum by Sperling et al. [42].We find
a significant improvement over standard dielectric models and
a remarkable agreement with the experimental data, even
when compared to computationally more complex first-
principles techniques such as time-dependent DFT.
Finally, the proposed ESA enables wide applications

beyond XRTS and XC functionals [24,43–50].
Results.—We begin with benchmarking the static

approximation against accurate PIMC results for both
the static structure factor (SSF) SðqÞ and the interaction
energy v. To this end, we make use of the fluctuation-
dissipation theorem [29],

Sðq;ωÞ ¼ −
Imχðq;ωÞ

πnð1 − e−βωÞ ; ð2Þ

which relates the dynamic density response function
χðq;ωÞ to the DSF Sðq;ωÞ, where n denotes the density

and β the inverse temperature. We note that an extensive
analysis of the DSF computed within the static approxi-
mation has been presented elsewhere [36,37] and need not
be repeated here. The corresponding SSF, defined as

SðqÞ ¼
Z

∞

−∞
dωSðq;ωÞ; ð3Þ

is shown in the top panel of Fig. 1 for the conditions rs ¼ 6
and θ ¼ 0.5 which are realized experimentally in hydrogen
jets [51] and evaporation experiments [52–55]. Because of
the pronounced impact of electronic XC effects [54], these
conditions are challenging from a theoretical perspective
and are, therefore, well suited to benchmark different
models. The blue diamonds correspond to PIMC data
and are exact within the given error bars. The dashed
black line is obtained from the static approximation where
the exact static limit of Gðq;ωÞ available as a neural-net
representation [40] was used as input. Remarkably, it is in
striking agreement with the exact PIMC results with a
maximum deviation of ∼1% (see the bottom panel). As a
reference, we also include the SSF computed within the
RPA (dash-dotted yellow line) and the LFC of Singwi et al.
[41,56,57] (STLS, dotted green line). As one might expect,
the RPA gives a poor description at these conditions,
reflected by the relative deviation exceeding 15%. The
STLS formalism is based on an approximate closure
relation for Gðq; 0Þ and leads to a substantial improvement
over RPA. Nevertheless, there are still systematic errors: the
relative deviation is about 8% and the correlation-induced
maximum in SðqÞ that appears at q ≈ 2.2qF is not repro-
duced by STLS. We thus conclude that the static

FIG. 1. Top: SSF of the UEG at rs ¼ 6 and θ ¼ 0.5. Blue
diamonds, PIMC; solid red line, ESA; dashed black line, static
approximation; dotted green line, STLS [41,56]; dash-dotted
yellow line, RPA. Bottom: relative deviation from the PIMC
results.
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approximation provides a highly accurate description
with negligible computational cost even at such challenging
conditions; more examples can be found in the
Supplemental Material [58].
Let us for now postpone the discussion of the ESA (solid

red line) in Fig. 1, and investigate the interaction energy of
the UEG, computed from SðqÞ via [2]

v ¼ 1

π

Z
∞

0

dq½SðqÞ − 1�: ð4Þ

In Fig. 2 we illustrate the relative accuracy of v within
different theories over the relevant θ range and at two
relevant values of the density parameter rs. The reference
result is the PIMC-based parametrization by Groth et al.
[79], which is exact to within ∼0.3%. The top panel
corresponds to rs ¼ 6, which is most challenging for most
theories due to the strong coupling strength.
Unsurprisingly, RPA is highly inaccurate over the entire
θ range with a relative deviation of ∼20%, whereas STLS
and the static approximation exhibit some interesting
behavior: For θ ≳ 1, both STLS and the static approxima-
tion are basically exact and can hardly be distinguished
from each other. For θ < 1, the STLS curve does still not
exceed deviations of 2%, whereas the quality of the static
approximation deteriorates as θ decreases with a systematic
deviation of almost 5% in the ground state. Let us first
consider the comparably high accuracy of STLS for v.
Evidently, this is not due to an inherently correct physical
description of the system, as STLS does not reproduce
important trends (see Fig. 1). The high accuracy for v is
rather the result of a fortunate cancellation of errors in SðqÞ
when inserted into Eq. (4), as it is too large in the small
wave-number and too low in the high wave-number regime.

In contrast, the static approximation provides a high-quality
description of SðqÞ for all q, but converges too slowly
toward unity for large q (see the inset in Fig. 1). While this
bias is relatively small for each individual q value, the
corresponding error in v accumulates under the integral in
Eq. (4) and leads to a substantial bias in the interaction
energy.
To develop an improved theory based on the static

approximation without this obstacle, we have to first
understand its origin. Our analysis centers on the well-
known asymptotic behavior of static LFCs [41] for large q,

lim
q→∞

GðqÞ ¼ 1 − gð0Þ; ð5Þ

where gð0Þ is the on-top pair distribution function (PDF),
i.e., the PDF at zero distance.
This is illustrated in Fig. 3, where we showGðq; 0Þ again

at rs ¼ 6 and θ ¼ 0.5. The dotted green curve corresponds
to STLS, which is an example for such a static theory
obeying Eq. (5); i.e., it converges toward a constant
for large q. As a side note, we mention that
GSTLSðq → ∞Þ > 1, which leads to an unphysical negative
value for gð0Þ; see also Refs. [29,80]. The blue diamonds in
Fig. 3 have been obtained from a PIMC simulation (see
Refs. [40,81,82] for details) and are exact within the given
error bars. The increasing level of noise toward large q is
due to the reduced impact ofGðq;ωÞ [see Eq. (1)], which is
further exacerbated by the fermion sign problem [83–85].
Similarly as in Fig. 1, we find that STLS does not give a
qualitatively correct description of the q dependence, and,
in addition, also violates the compressibility sum rule for
small q; see Ref. [56]. The dashed black line depicts the
neural-net representation of the exact, static LFC from
Ref. [40] and it is in excellent agreement with the PIMC
data. We note that the PIMC data were not used as input for
the neural net and, thus, constitute a valuable validation of
the dashed black curve for q≲ 3qF, whereas the PIMC
error bars are too large for larger q to assess its quality.
Further, the black curve increases monotonically with q
and, thereby, violates Eq. (5).
In fact, it can be shown that this long wave-number

behavior of the exact Gðq; 0Þ is responsible for the
unphysically slow convergence of SðqÞ toward unity within
the static approximation [58]. Methods like STLS
[41,56,57] and other static dielectric theories [86,87] are
based on a LFC independent of ω, but still coupled to SðqÞ
via some form of closure relation. Therefore, these theories
do not necessarily constitute an approximation to
limω→0 Gðq;ωÞ, but can be viewed as a frequency-averaged
LFC, i.e., a LFC that is meaningful for quantities that
involve a frequency integral like SðqÞ or v. In contrast, the
static approximation is based on the exact ω → 0 limit of
Gðq;ωÞ, which gives remarkably high-quality results for
Sðq;ωÞ and SðqÞ, but induces small, yet significant,
unphysical effects that accumulate under a wave-number

FIG. 2. Relative difference in the interaction energy per particle
v as compared to the accurate parametrization of the exchange-
correlation free energy fXC by Groth et al. [79].
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integral. In addition to the bias in v, the slow convergence
of SðqÞ also induces a divergent on-top PDF [58], and, thus,
substantially limits the usefulness of the static approxima-
tion that is directly based on the static LFC from Ref. [40].
To overcome these limitations, we introduce the effective

static approximation as the central result of this Letter. It
combines the exact Gðq; 0Þ for q≲ 3qF with the appro-
priate long wave-number limit in Eq. (5), thereby ensuring
a proper convergence of SðqÞ and the correct on-top PDF
gð0Þ. The resulting LFC has the form

GESAðqÞ ¼ AðqÞ½1 − gð0Þ� þ GnnðqÞ½1 − AðqÞ�; ð6Þ

where AðqÞ is a simple activation function [58] and GnnðqÞ
corresponds to the neural-net from Ref. [40]. We note that
the specific form of the activation function is not particu-
larly important for the ESA as long as the conditions
Að0Þ ¼ 0 and Aðq → ∞Þ ¼ 1 are satisfied; the empirical
choice for AðqÞ used in this work is discussed in the
Supplemental Material [58]. In addition, we have con-
structed an analytical parametrization of gð0Þ that combines
the ground-state results by Spink et al. [88] with the
restricted PIMC results by Brown et al. [89] at finite θ.
Both the functional form and the corresponding fit param-
eters are given in the Supplemental Material [58] and can be
used for other applications [90–92].
The resulting LFC is shown as the red curve in Fig. 3 and

does indeed smoothly combine the exact Gðq; 0Þ with the
consistent limit in Eq. (5). The impact of this improvement
is illustrated in Fig. 1, where the ESA reproduces the
accurate SðqÞ from the static approximation for q≲ 3qF,
but, in addition, exhibits a much faster convergence to unity
for large q. As expected, this leads to substantially
improved results for integrated quantities, such as inter-
action energies with an accuracy of ∼1% (Fig. 2). The
improved results for v are also shown at a higher density,

rs ¼ 2, in the bottom panel of Fig. 2. Additional results of
SðqÞ and GðqÞ are shown in the Supplemental
Material [58].
Up to this point, we have shown that the proposed ESA is

capable of yielding highly accurate results for Sðq;ωÞ,
SðqÞ, and v without any additional computational cost
compared to the RPA.
We conclude this Letter by turning to an actual appli-

cation of the ESA. We demonstrate its utility as a first-
principles method for the rapid interpretation of XRTS
signals. Specifically, we consider the XRTS experiment on
isochorically heated aluminum by Sperling et al. [42]
shown in Fig. 4 and demonstrate the impact of electronic
XC effects included in the ESA. We compare the decon-
volved scattering signal collected from the corresponding
XRTS experiment at a scattering angle of θ ¼ 24° (black
line) with several theoretical predictions of the DSF. The
theoretical predictions are renormalized with respect to the
peak at around 7958 eV in the experimental data. The ESA
(red line) is in remarkable agreement with the experimental
data, while coming at a computational cost of the simple
RPA. The RPA (yellow line) yields only qualitative agree-
ment. While the static LFC within STLS (green line) is
closer to the ESA result, it also comes at a higher
computational cost compared to the ESA, because a
self-consistent set of equations for the static structure
factor, the dielectric function, and the static LFC needs
to be solved. The computationally more complex time-
dependent DFT (blue line) within the adiabatic LDA also
yields only qualitative agreement (see also Ref. [93]) and is,
furthermore, orders of magnitude more expensive than the
ESA. The results shown here are computed at a temperature
of 0.3 eV. Additional details and results at the nominal
temperature of 6.0 eVare given in the SupplementalMaterial
[58]. Furthermore, in contrast to common, low-cost dielectric

FIG. 3. Wave-number dependence of the local field correction
GðqÞ at rs ¼ 6 and θ ¼ 0.5. The static curve has been obtained
from the neural-net given in Ref. [40], and the ESA curve
corresponds to Eq. (6). The parametrization of the on-top PDF
gð0Þ is given in the Supplemental Material [58].

FIG. 4. The deconvolved XRTS signal in isochorically heated
aluminum [42] is compared with the DSF from the ESA (red line),
STLS (green line), time-dependent DFT (TDDFT) within the local
density approximation (LDA, blue line), and RPA (yellow line), all
of them computed at a temperature of 0.3 eV.

PHYSICAL REVIEW LETTERS 125, 235001 (2020)

235001-4



models based on phenomenological parameters [27,57,
94–97], the ESA provides a consistent prediction of
XRTS signals from first principles [58] and does not rely
on any phenomenological parameters.
Discussion.—In summary, we have presented the ESA

which is capable of providing highly accurate results for
electronic properties like Sðq;ωÞ, SðqÞ, and v, without any
additional computational cost compared to standard RPA
calculations. We expect the ESA to replace all known
RPAþ LFC combinations. The ESA is likely to have
tremendous impact in a large number of applications
beyond the interpretation of XRTS experiments, such as
in the calculation of stopping powers [43,44], energy
relaxation rates [45], and electrical or thermal conductiv-
ities [98]. Other examples include the construction of
effective potentials [46–48], quantum hydrodynamics
[24,49,50], and modeling of high energy density physics
phenomena with average-atom codes [99,100]. Finally, we
point out that the ESA is particularly relevant for wave-
number averaged quantities like v, which is of key
importance for constructing advanced XC functionals
[33–35]. A PYTHON-based implementation of the ESA is
freely available online [58] and can be easily incorporated
into existing codes. Moreover, the ESAwill be included in a
novel open-source XRTS code that is currently being
developed.
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