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It is shown that a circular dipole can deflect the focused laser beam that induces it and will experience a
corresponding transverse force. Quantitative expressions are derived for Gaussian and angular top hat
beams, while the effects vanish in the plane wave limit. The phenomena are analogous to the Magnus effect,
pushing a spinning ball onto a curved trajectory. The optical case originates in the coupling of spin and
orbital angular momentum of the dipole and the light. In optical tweezers the force causes off-axis
displacement of the trapping position of an atom by a spin-dependent amount up to λ=2π, set by the
direction of a magnetic field. This suggests direct methods to demonstrate and explore these effects, for
instance, to induce spin-dependent motion.
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A common practice in many branches of sports is to send
a ball onto a curved trajectory by giving it a spin. In this
famous example of the Magnus effect [1], the spinning ball
deflects the stream of air around it and is pushed sideways
by the reaction force perpendicular to its forward velocity.
In analogy, we may ask if a rotating dipole in an atom may
similarly deflect a beam of light and thereby be pushed by a
force perpendicular to the light beam. Darwin already
remarked that, for circular dipoles, “… the wave front of
the emitted radiation faces not exactly away from the
origin, but from a point about a wave-length away from it”
[2]. A recent experiment confirmed that an atomic circular
dipole can indeed appear to be displaced from its true
location, due to the emitted spiral-shaped wave front [3].
Circular dipoles provide perhaps the simplest example of
the intrinsic coupling of spin and orbital angular momen-
tum in nonparaxial light fields [4–13]. Such fields, in the
form of tightly focused laser beams, are of central impor-
tance in a rapidly growing range of experiments involving
(arrays of) optical tweezers [14–24]. These are developed
as precise tools to hold and manipulate single atoms or
molecules at the quantum level, in creating platforms for
quantum simulation and computation, as well as for
quantum sensing and atomic clocks [25,26].
Here we predict that an atomic circular dipole can deflect

the centered focused laser beam that induces it. Conversely,
the atom will experience a transverse force when on axis
[27]. An important consequence of this force can be seen in
the off-axis displacement of the trapping potential created

by an optical tweezer [24]. Thus, rather than “seeing an
atom where it is not” [3,29,30], here we describe its
counterpart of “trapping an atom where the focus is not”
[14,24,31]. A simple geometric argument based on light
scattering shows that the true displacement of the trapping
potential is in fact a direct consequence of the apparent

FIG. 1. Optical analog of the Magnus effect. (a) A linearly
polarized (Ekx), focused laser induces a circular dipole (xz plane)
on a j ¼ 0 → j0 ¼ 1 (Δmj ¼ 1) transition, with a magnetic field
Bky setting the quantization axis. The spiral wave scattered by
the circular dipole interferes with the incident wave, producing
two effects: (b) The incident beam is deflected in the xz plane,
with corresponding reaction force on the atom, transverse to the
beam. The direction changes sign with the detuning from the
atomic resonance. (c) In an optical tweezer (“red” detuning,
Δ < 0), the transverse force shifts the trapping position away
from the optical axis by an amount ƛ ¼ λ=2π. See Fig. 3 for a far
off-resonance case.
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displacement of an emitting circular dipole [2,3]. Tweezer
trap displacements have previously been calculated numeri-
cally, for specific beam shapes, in terms of vector and
tensor light shifts [14,31]. The geometric argument given
here directly shows that, for a circular dipole, the displace-
ment is simply �ƛ ¼ �λ=2π and is remarkably indepen-
dent of many parameters, including the laser detuning, trap
frequency, and even the detailed shape of the trap. A
comparison of a Gaussian beam with an angular top hat
beam illustrates this. This profound insight provides the
basis for state-dependent manipulation of atomic motion
within the tweezer.
We describe these effects in terms of interference

between the focused incident beam with the wave scattered
by the circular dipole, see Fig. 1. In the optical theorem,
such interference is used to describe the attenuation of light
in terms of the forward scattering amplitude [32]. In
contrast, here we concentrate on beam deflection, as a
consequence of the tilt of the spiral wave front with respect
to the incident wave. Two simple atomic-level schemes
serve as examples; (i) a j ¼ 0 → j0 ¼ 1 and (ii) a j ¼ 1 →
j0 ¼ 0 transition. Case (i) is conceptually simpler and most
suited to observe the Magnus-like deflection of a weak,
near-resonant probe beam. Case (ii) offers interesting extra
opportunities in the usual far off-resonance regime of
optical tweezer experiments.
Starting with case (i), the j ¼ 0 → j0 ¼ 1 transition, we

focus a linearly polarized (Ekx), monochromatic laser onto
a single atom placed in the origin, see Fig. 1. A magnetic
field Bky defines the quantization axis and splits the
excited state into three jj; mjiy sublevels, separated by
the Zeeman shift ∼μBB=ℏ, with μB the Bohr magneton
[33]. We tune the laser close to the Δmj ¼ þ1 transition,
with a detuning Δ ¼ ωL − ω0 small compared to the
Zeeman shift, so that the Δmj ¼ 0;−1 transitions can
be neglected (for example, Δ=2π ∼ 10 and μBB=h∼
100 MHz.) The emission by the induced circular dipole
has a spiral wave front in the xz plane, tilted with respect to
the forward ẑ direction of the incident beam.
We represent the light fields by their angular spectrum

[34,35], using spherical k-space coordinates ðk; θ;ϕÞ. For
monochromatic light, with k ¼ ω=c fixed, the incident field
can be written as 1

2
EinðΩÞe−iωt þ c:c:, with Ω ¼ ðθ;ϕÞ.

The total field is the sum of the incident and scattered
waves. Writing only the positive frequency (∼e−iωt) com-
ponents, the total field reads

EðΩÞ ¼ EinðΩÞ þ EscðΩÞ; ð1Þ
with EscðΩÞ the scattered wave.
We define the radiant intensity

JðΩÞ ¼ jEðΩÞj2=2Z0; ð2Þ
with Z0 ¼ 1=ϵ0c, so that JðΩÞdΩ is the power flowing out
of an infinitesimal solid angle dΩ ¼ sin θdθdϕ around

uΩ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ: ð3Þ

Combining Eqs. (1) and (2), the total radiant intensity is
the sum of three terms,

JðΩÞ ¼ JinðΩÞ þ JscðΩÞ þ JifðΩÞ: ð4Þ

The interference term

JifðΩÞ ¼
1

2Z0

½E�
inðΩÞ · EðcohÞ

sc ðΩÞ þ c:c:� ð5Þ

contains only the coherent component of the scattered field.
An incoherent component would contribute to JscðΩÞ but
not to JifðΩÞ. For simplicity we assume that the scattered
field is entirely coherent, essentially restricting ourselves to
the low-saturation limit (see Supplemental Material [35]).
The deflection of the light beam can be expressed as the

change in average wave vector hki − hkiin between the
total (incident plus scattered) and the incident wave, using

hkiin ¼ k

R
uΩJinðΩÞdΩR
JinðΩÞdΩ

¼ k

R
uΩJinðΩÞdΩ

Pin
ð6Þ

and similar for hki, omitting the subscript. Assuming
(again for simplicity) that nonradiative decay is absent,
we shall write Pin ¼ P throughout.
The deflection is entirely determined by the interference

term JifðΩÞ. The scattered light itself does not contribute,
due to the symmetry of the dipole radiation pattern,
Jscðθ;ϕÞ ¼ Jscðπ − θ; π þ ϕÞ, so that

R
uΩJscðΩÞdΩ ¼ 0.

For the deflection, we therefore have

δhki ¼ hki − hkiin ¼
k
P

Z
uΩJifðΩÞdΩ; ð7Þ

and for the force on the atom, by momentum conservation,

F ¼ −
P
ω
δhki ¼ −

1

c

Z
uΩJifðΩÞdΩ: ð8Þ

While this expression includes the forward radiation
pressure force, in the cases of interest here the main force
will be transverse to the optical axis, F ≈ Fxx̂. Then
(approximately) δhki⊥hkiin and with hkiin ≈ kuz the
deflection angle is

jδθj ≈ jδhkij
k

: ð9Þ

We will choose δθ > 0 if Fx < 0.
Let us now introduce specific field patterns to calculate

JifðΩÞ. We take the dipole to be circular, p ¼ peiαuþ, with
u� ¼ ðx̂ ∓ iẑÞ= ffiffiffi

2
p

denoting spherical unit vectors, and α
the phase of the px component of the dipole, relative to the
local driving field. The field radiated by a coherent dipole
[32], in angular coordinates, takes the form [35]
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EscðΩÞ ¼ EscieiαðuΩ × uþÞ × uΩ; ð10Þ

with corresponding JscðΩÞ given by Eq. (2). Here Esc ¼
pk2=4πϵ0 > 0 is a real-valued amplitude. Assuming
the steady state of the optical Bloch equations for a two-
level system, cot α ¼ −Δ=γ, withΔ ¼ ω − ω0 the detuning
from the Δmj ¼ þ1 transition, and γ ¼ ω3

0D
2=6πϵ0ℏc3 the

half width of the transition, with D the transition dipole
moment.
For comparison, we consider two different types of

incident beams, Gaussian (G) and “angular top hat” (Π),
where the latter approximates the output of a uniformly
illuminated focusing lens. The field for these two beams
can be written as

EðGÞ
in ðΩÞ ≈ EðGÞ

0 exp½−θ2=w2
θ�uxðΩÞ; ð11Þ

EðΠÞ
in ðΩÞ ¼ EðΠÞ

0 Πðθ=2rθÞuxðΩÞ; ð12Þ

with amplitudes EðGÞ
0 and EðΠÞ

0 > 0. The Gaussian beam has
an angular width wθ, which is related to the minimum waist
w0 (1=e2 spatial radius of intensity) as wθw0 ¼ λ=π. For the
angular top hat, Πðθ=2rθÞ is the rectangular function
with angular half-width rθ and unit amplitude. Its spatial
profile near the focus is the familiar Airy disk pattern. Note
that neither propagation phases nor the Gouy phase are
visible here, as the above expressions are in angular
coordinates [35].
The polarization vector uxðΩÞ is transverse to uΩ; it is

obtained by corotating x̂ when rotating ẑ → uΩ, i.e.,
rotating by θ around an axis ẑ × uΩ [11,36],

uxðΩÞ ¼

0
BB@

cos θ cos2 ϕþ sin2 ϕ

ðcos θ − 1Þ sinϕ cosϕ

− sin θ cosϕ

1
CCA: ð13Þ

When combining Eq. (10) with Eq. (11) or (12) in
Eq. (5), the interference term contains the amplitude
product EðGÞ

0 Esc or EðΠÞ
0 Esc. In the low-saturation limit,

the amplitude Esc is proportional to E
ðGÞ
0 or EðΠÞ

0 . Their ratio
can be obtained by requiring energy conservation [35].

Upon insertion of the resulting ratios Esc=E
ðGÞ
0 and Esc=E

ðΠÞ
0

into Eq. (5), the interference term JifðΩÞ becomes propor-
tional to the total power; the deflection angle is then
independent of power.
In Fig. 2 we show JinðΩÞ in the plane of the dipole

(ϕ ¼ 0), together with the total radiant intensity JðΩÞ. For
the Gaussian beam, the effect of JifðΩÞ is to shift the peak
and the average of the direction of propagation away from
θ ¼ 0. For the angular top hat, the interference leads to an
intensity gradient across the angular width of the beam,
whereas the edges stay at the same angle. In this case, the

intensity gradient leads to a change in average beam
direction.
Finally, the deflection angle is obtained by integration as

in Eq. (7),

δθ ≈
3

4

γΔ
ðγ2 þ Δ2Þ ×

(
w4
θ ðGaussÞ

r4θ=4 ðangular top hatÞ ð14Þ

and the reaction force as

Fx ≈ −
P
c
δθ: ð15Þ

The results are given as the leading order in wθ and rθ. The
deflection angle reaches maximal values of δθ ¼ �3w4

θ=8
and �3r4θ=32, respectively, for Δ ¼ �γ; it vanishes in the
plane wave limit, wθ; rθ → 0. In this central result, we
recognize in the detuning dependence that the force is
essentially a dipole force [37], arising from polarization
gradients near the focus of a linearly polarized light beam
[7–9,12,14,24,31].
We now address the question of how we can observe the

deflection of a laser beam, either directly or via the reaction
force on the atom. As shown by Eq. (14), the angle of
deflection by a single atom is small compared to the
divergence angle, jδθj ≪ rθ; wθ. A direct observation will
thus require sufficiently high signal-to-noise ratio, similar
to what was achieved in the recent observation of apparent
ƛ displacement of an emitter [3]. With maximal signal
occurring near resonance (Δ ¼ �γ), where the photon
scattering rate is high, the best approach would be to hold
the atom in an independent trap, such as an ion trap or a
tight optical tweezer. One can then look for the deflection
of a weak, near-resonant probe beam. A larger deflection
angle may be obtained if multiple atoms cooperate. For
example, one may consider dense clouds of subwavelength
size, containing tens to hundreds of atoms, that have been

FIG. 2. Beam deflection: radiant intensities in the plane of the
uþ dipole, for (a) a Gaussian incident beam with wθ ¼ 0.6 and
(b) an angular top hat incident beam with rθ ¼ 0.6. In both cases,
the gray dotted curve shows Jinðθ;ϕ ¼ 0Þ of the incident beam,
normalized to 1 for θ ¼ 0; red solid and blue dashed curves show
the outgoing, or total Jðθ; 0Þ, for Δ ¼ −γ and þγ, respectively.
For clarity, we identify ðθ; 0Þ≡ ð−θ; πÞ. Curves remain the same
upon switching simultaneously the signs of the detuning and the
spin of the dipole.
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observed to show collective scattering properties [38,39].
Another possibility may be to use elongated, (quasi)one-
dimensional samples with tight (≲ƛ) radial confinement,
achievable, e.g., in optical lattices [40–42] and on atom
chips [43].
The second mode of observation, via the force on the

atom, provides extra opportunities to manipulate spin-
dependent atomic motion in an optical tweezer. To see
this we consider case (ii): an optical tweezer trapping an
atom with a j ¼ 1 → j0 ¼ 0 transition. The jmj ¼ �1iy
states now couple to the ðσ∓Þy components of the light field
and therefore experience opposite forces Fx. In this
configuration, there is no need for a separate probe beam
[24], the far off-resonance light (Δ=2π ∼ 1–10 THz) of the
tweezer itself is sufficient. The photon scattering and
associated heating rates can thus be kept as low as in
typical tweezer experiments. In this case, we assume that
the Zeeman shift is large compared to the trap depthU0 (for
example, μBB=h ∼ 10 and U0=h ∼ 1 MHz.) Looking at the
spiral wave of a uþ dipole shown in Fig. 1, we can readily
see that the relative tilt of the forward wave fronts will
vanish if we displace the atom by ƛ in the x direction. By
thus aligning the wave fronts, the transverse force should
vanish. An atom in the jmj ¼ −1iy sublevel will therefore
find an equilibrium position in the tweezer at a displaced
off-axis location xeq ¼ ƛ. By the same reasoning, the
jmj ¼ þ1iy sublevel will have the opposite displacement,
so that for the j ¼ 1 → j0 ¼ 0 transition

xeq ¼ −ðmjÞyƛ: ð16Þ

The tweezer thus traps the atom off axis, where the focus is
not, in a spin-dependent location. For the situation con-
sidered here, the jmj ¼ 0iy state would be untrapped, for a
lack of π component in the laser polarization. This could be
changed by rotating B. In particular, setting the angle
between Ein and B to arctanð ffiffiffi

2
p Þ, the polarization com-

ponents σ−, π, and σþ would become equal. At this “magic
angle” all three spin components would be trapped with a
Stern-Gerlach type separation [24,44].
These simple geometric arguments are backed up by a

calculation [35], that shows that Eq. (14) for the beam
deflection is multiplied by 1 ∓ kd, for a u� dipole
displaced by d in the x direction, to lowest order in d.
Thus, the transverse force indeed vanishes for a transverse
displacement of d¼k−1¼ƛ in the x direction. Remarkably,
the size of the displacement is independent of the detuning,
the beam divergence angle, the trap frequency, or even the
precise shape of the beam (Gauss vs angular top hat). This
profound insight follows from the geometric properties of
the scattering problem.
The off-axis trapping locations offer interesting oppor-

tunities to manipulate the motion of atoms in the tweezer,
see Fig. 3. Let us imagine an atom trapped in the jmj ¼ 1iy
state. As we slowly rotate the magnetic field in the yz plane,

the orientation of the atom will adiabatically follow
the rotating quantization axis. After rotating the field
y → z → −y, the spin will have maintained its orientation
relative to B, i.e., jmj¼1iB→jmj¼1iB. However, its
orientation will have flipped in space, jmj¼1iy→
jmj¼−1iy, since B has changed direction. The space-
referenced spin flip implies that the atom must have
moved to the other side of the optical axis. Thus, by
rotating the magnetic field in the yz plane at a frequency
ωB, we effectively shake the trap back and forth:
xeq ¼ −ðmjÞBƛ cosωBt. The mj ¼ �1 levels are shaken
with opposite phase.
Shaking the trap at an amplitude ƛ is equivalent to a

harmonic driving force Fx ¼ mω2ƛ cosωBt, withω the trap
frequency. Resonant shaking, ω ≈ ωB, will induce an
oscillatory motion in the trap. For example, for a tweezer
with a laser wavelength of λ ≈ 0.8 μm, a Gaussian waist of
2 μm, holding an atom of mass m ¼ 88u in a 20 μK deep
trap, the trap frequency will beω ≈ 2π × 7 kHz. In a simple
driven harmonic oscillator model, only 3.5 drive cycles
would impart enough energy to kick the atom out of the
trap, corresponding to a velocity of ∼6 cm=s. In reality one
would of course need to take anharmonicity into account.
The point here is that magnetic field modulation can easily
induce oscillatory motion in the trap, which can then be
detected either as trap loss, or by using time-of-flight
imaging methods. For the required magnetic field, a few
gauss should be sufficient to ensure that the Larmor

FIG. 3. Optical tweezer operating on a j ¼ 1 → j0 ¼ 0 tran-
sition, leading to �ƛ off-axis displacements for the ðmjÞy ¼ ∓1

sublevels (upper left). The four panels show, in clockwise order,
the effect of a rotation of the quantization axis (B), through a
cycle y → z → −y → −z. While the B-referenced ðmjÞB of an
atom is conserved, the space-referenced ðmjÞy is not. The
locations of the ðmjÞB ¼ �1 traps move up and down along
the x axis, in antiphase. If B is rotated at the trap frequency, spin-
dependent oscillatory motion in the tweezer can be induced.
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frequency is large compared to the trap frequency. Rotating
the field at frequencies of ∼10 kHz is well possible, being
comparable to what is used in time-averaged, orbiting
potential traps [45].
Many available atomic-level systems should be suitable

to display off-axis tweezer trapping. For example, in 88Sr
the transition 3P2 → 3S1 would provide a j ¼ 2 → j0 ¼ 1
transition. The outer ðmjÞy ¼ 2ð−2Þ state couples only to
the σ−ðσþÞ polarization component, so its spatial shift will
be −ƛðþƛÞ. Using 87Rb one could operate a tweezer red
detuned to the D1 line (795 nm), driving the two hyperfine
lines F ¼ 2 → F0 ¼ 1, 2. Also in this case the outer state
ðmFÞy ¼ 2ð−2Þ is displaced by −ƛðþƛÞ, as long as the
detuning stays small compared to the fine structure splitting
of the D lines.
In summary, it is predicted that a circular dipole can

deflect a focused laser beam, similar to a spinning ball
deflecting a stream of air in the Magnus effect. The reaction
force on the atom leads to spin-dependent, off-axis dis-
placement of atoms trapped in an optical tweezer. For a
pure circular dipole, the displacement is �ƛ, independent
of many trap parameters. An external magnetic field can be
used to induce spin-dependent motion or to perform Stern-
Gerlach type analysis of the spin states of the atom in the
tweezer.
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