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We introduce relativistic charge distributions for targets with arbitrary average momentum, providing a
natural interpolation between the usual Breit frame and infinite-momentum frame distributions. Among the
remarkable results, we find that Breit frame distributions can be interpreted from a phase-space perspective
as internal charge quasidensities in the rest frame of a localized target, without any relativistic correction.
Moreover, we show that the unexpected negative center observed in the unpolarized neutron infinite-
momentum frame charge distribution results from a magnetization contribution generated by the Wigner
rotation.
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Electromagnetic form factors (FFs) of nucleons and
nuclei have been measured over the past decades to an
impressive level of precision; see, e.g., Refs. [1–4]. They
describe how the target reacts in an elastic scattering
without getting excited, and contain therefore information
about the internal distribution of charge and magnetization.
According to textbooks, FFs can be interpreted

as Fourier transforms of charge and magnetization distri-
butions. Since relativistic wave functions are frame
dependent, Fourier transforms are often restricted to the
Breit frame (BF) [5,6], where calculations formally yield
the same expressions as in the nonrelativistic domain.
Concerns about the physical meaning of BF distributions
have however been expressed [7,8], and their relation to
genuine rest-frame distributions is usually thought to
involve unclear and ambiguous relativistic corrections [9].
A strict density or probabilistic interpretation is tied to

Galilean symmetry. In quantum field theory, it can only be
justified when momentum transfer remains small compared
to inertia. Accordingly, the concept of rest-frame density is
intrinsically limited by the Compton wavelength. One can
however avoid these limitations in the infinite-momentum
frame (IMF), where the inertia becomes formally infinite
[10–13]. The price to pay is that the corresponding
densities are now two dimensional and appear to be
distorted due to the motion of the target relative to the
observer [14,15].
A phenomenological analysis of experimental data con-

cluded that the center of the IMF charge distribution of
the neutron is negative [16], in flagrant conflict with the

rest-frame picture suggested by both gluon-exchange and
meson-cloud models. Despite numerous efforts devoted to
understanding this phenomenon, a fully convincing explan-
ation has so far never been obtained.
We show in the following that meaningful 2D charge

distributions free of relativistic corrections can be defined
for localized targets with arbitrary average momentum,
provided that the requirement of a strict density interpre-
tation is relaxed. They provide the natural interpolation
between BF and IMF distributions and allow one to track
down all distortions induced by the motion of the target. In
particular, we find that a negative center in the neutron IMF
charge distribution does not contradict the rest-frame
picture and simply results from relativistic kinematical
effects associated with spin.
We start with the observation that Lorentz symmetry

implies that relativistic charge distributions are generally
frame dependent. Their proper definition requires therefore
to adopt a phase-space perspective. In a quantum theory, it
has been known for a long time that the expectation value
of any operator Ô in a physical state jψi can nicely be
expressed as [17,18]

hÔiψ ¼
Z

d3P
ð2πÞ3 d

3RρψðR;PÞhÔiR;P; ð1Þ

where

ρψ ðR;PÞ≡
Z

d3ze−iP·zψ�
�
R −

z
2

�
ψ

�
Rþ z

2

�

¼
Z

d3q
ð2πÞ3 e

−iq·Rψ̃�
�
Pþ q

2

�
ψ̃

�
P −

q
2

�
ð2Þ

defines the quantum phase space or Wigner distribu-
tion. Because of Heisenberg’s uncertainty relations,
Wigner distributions receive only a quasiprobabilistic
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interpretation: They give the quantum non-positive-
definite weight of finding the system at average position
R ¼ 1

2
ðx0 þ xÞ with average momentum P ¼ 1

2
ðp0 þ pÞ.

Strict probabilistic interpretation is recovered under inte-
gration over position or momentum,

Z
d3Rρψ ðR;PÞ ¼ jψ̃ðPÞj2; ð3Þ

Z
d3P
ð2πÞ3 ρψðR;PÞ ¼ jψðRÞj2: ð4Þ

Since wave packet details have been factored out in
Eq. (1),

hÔiR;P ≡
Z

d3Δ
ð2πÞ3 e

iΔ·R

�
Pþ Δ

2

����Ô
����P −

Δ
2

�
ð5Þ

can be interpreted as the part associated with the
internal structure of the system. Here jpi is a momentum
eigenstate with noncovariant normalization hp0jpi ¼
ð2πÞ3δð3Þðp0 − pÞ. When Galilean symmetry applies,
hÔiR;P becomes P independent and we recover a strict
density interpretation owing to Eq. (4). Although this
formalism was originally developed in the nonrelativistic
context, it carries over to quantum field theory [19] where
position is understood in the Newton-Wigner sense [20,21].
Both initial and final states being on the mass shell

p02 ¼ p2 ¼ M2, the four-momentum transfer Δ ¼ p0 − p
is spacelike and orthogonal to the timelike average four-
momentum P ¼ 1

2
ðp0 þ pÞ. Its intrinsic meaning is then

obtained in the class of elastic frames (EF) defined by the
condition Δ0 ¼ 0. In particular, the case P ¼ 0 is known as
the BF and simply corresponds from the phase-
space perspective to the rest frame of the target localized
around R.
EF distributions were introduced in Refs. [22,23] to

study the frame dependence of the nucleon energy-momen-
tum tensor. We define here in a similar way relativistic 2D
distributions of the charge four-current (in units of the
proton charge) as follows

JμEFðb⊥;PzÞ≡
Z

drzhĵμðrÞiR;Pzez

¼
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥
�hp0; s0jĵμð0Þjp; si

2P0

�
Δz¼0

; ð6Þ

where the z axis is chosen for convenience along P and
b⊥ ¼ r⊥ − R⊥ are the impact parameter coordinates. The
integration over the longitudinal coordinate in the first line
ensures that the elastic condition Δ0 ¼ 0 is satisfied
when the target is moving, i.e., for Pz ≠ 0. In the second
line, we used translation invariance and we switched to
momentum eigenstates with covariant normalization

hp0; s0jp; si ¼ ð2πÞ32p0δð3Þðp0 − pÞδs0s. Note that these
spatial distributions depend on the type of polarization.
We choose canonical spin, labeled by s and s0, because it is
the most natural polarization in the sense that its definition
involves only a rotationless boost. The corresponding
position operator coincides then with the Newton-
Wigner operator, and has the unique feature of satisfying
the same commutation relations as the nonrelativistic one.
Although it is true that relativistic densities cannot be

defined in a model-independent way except in the IMF, we
showed that unambiguous relativistic quasidensities
(or distributions) JμEFðb⊥;PzÞ exist for any value of Pz.
They are time independent (reflecting the fact that the target
does not get excited during an elastic process in the first
Born approximation) and they can be extended to 3D
distributions in the BF. We note also that there are no
limitations to the resolution since the average four-momen-
tum is off shell P2 ¼ M2 − Δ2=4, so that the constraint
P0 > jΔj=2 is always satisfied.
For a spin-0 target, Lorentz symmetry implies that the

generic off-forward matrix elements of the charge four-
current operator can be written as

hp0jĵμð0Þjpi ¼ 2PμFðQ2Þ; ð7Þ

with FðQ2Þ a Lorentz-invariant function ofQ2 ¼ −Δ2. The
corresponding relativistic 2D charge distribution takes the
simple form

J0EFðb⊥;PzÞ ¼
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥FðΔ2⊥Þ ð8Þ

and appears to be independent of Pz. It is therefore the same
in both the BF and the IMF, confirming that it is free of
relativistic corrections. Since from a phase-space perspec-
tive the BF is the target rest frame, there is indeed no need
to boost the system to set either p or p0 to zero. Moreover,
Lorentz contraction effects are automatically taken into
account by the combination jpi=

ffiffiffiffiffiffiffiffi
2p0

p
.

In the case of a spin-1=2 target like the nucleon, the
situation is more complicated. The generic off-forward
matrix elements of the charge four-current operator,

hp0; s0jĵμð0Þjp; si ¼ ūðp0; s0ÞΓμðP;ΔÞuðp; sÞ; ð9Þ

are usually parametrized in terms of the Dirac and Pauli
FFs,

ΓμðP;ΔÞ ¼ γμF1ðQ2Þ þ iσμνΔν

2M
F2ðQ2Þ: ð10Þ

We find that these amplitudes can be interpreted in a more
transparent way using the alternate but equivalent para-
metrization (ϵ0123 ¼ þ1)
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ΓμðP;ΔÞ ¼ MPμ

P2
GEðQ2Þ þ iϵμαβλΔαPβγλγ5

2P2
GMðQ2Þ;

ð11Þ

where GE;MðQ2Þ are known as the Sachs FFs [5,6],

GEðQ2Þ ¼ F1ðQ2Þ − τF2ðQ2Þ;
GMðQ2Þ ¼ F1ðQ2Þ þ F2ðQ2Þ; ð12Þ

with τ ¼ Q2=4M2. We indeed recognize Eq. (11) as the
covariant version in momentum space of the well-known
decomposition of the charge current into convection and
magnetization currents J ¼ ρvþ∇ ×M [7].
In the BF, we naturally define the relativistic 3D four-

current distribution as JμBðrÞ≡ hĵμðrÞi0;0. The 3D charge
distribution is then given by

J0BðrÞ ¼
Z

d3Δ
ð2πÞ3 e

−iΔ·r M
P0

GEðΔ2Þ; ð13Þ

and the 3D current distribution JBðrÞ ¼ ∇ ×MBðrÞ arises
from the curl of the magnetization distribution,

MBðrÞ ¼
σ
2M

Z
d3Δ
ð2πÞ3 e

−iΔ·r M
P0

GMðΔ2Þ; ð14Þ

where σ are the Pauli matrices. Note that they differ from
the conventional Sachs distributions [6] by a kinematical
factor M=P0 ¼ ð1þ τÞ−1=2. It is the same factor that
appears explicitly in the differential elastic cross section
in the first Born approximation [7,24],

dσ
dΩ

¼
�
dσ
dΩ

�
Mott

�
G2

EðQ2Þ þ τ

ϵ
G2

MðQ2Þ
�

1

1þ τ
; ð15Þ

where ϵ and ðdσ=dΩÞMott are, respectively, the virtual
photon polarization and the Mott cross section including
recoil effects in the lab frame. In a nonrelativistic
expansion, it gives rise to the famous Darwin-Foldy term
∝ Δ2=8M2 [7] which is traditionally excluded from the
definition of a charge distribution in both the atomic and
nuclear physics literature [5,25]. From a relativistic per-
spective, the kinematical factor is however essential to
ensure that the total charge,

Z
d3rhĵ0iR;PðrÞ ¼

hP; sjĵ0ð0ÞjP; si
2P0

¼ GEð0Þ; ð16Þ

behaves as a Lorentz scalar quantity [25]. Although several
authors recommended its inclusion, a consistent and fully
relativistic definition of the charge distribution was missing
so far. Sachs distributions have then been adopted by
default in the literature, and the question of the kinematical
factor disappeared in the limbo of relativistic uncertainties

plaguing their physical interpretation. We demonstrated
here that adopting a phase-space perspective clarifies the
situation now.
In Fig. 1 we compare the conventional Sachs charge

distribution for the nucleons with the corresponding 3D
quasidensity in the BF, using the phenomenological para-
metrization from Ref. [26]. We see that in both cases the
center of the neutron charge distribution is positive, in
agreement with the standard picture of a neutron fluctuating
predominantly into a proton surrounded by a negatively
charged pion cloud.
When the nucleon is moving, the charge distribution

appears to be distorted due to relativistic kinematical effects
associated with spin. We can indeed write in general
[27,28]

hp0; s0jĵμð0Þjp; si ¼
X
s0B;sB

D�ðjÞ
s0Bs

0 ðp0
B;ΛÞDðjÞ

sBsðpB;ΛÞ

× Λμ
νhp0

B; s
0
Bjĵνð0ÞjpB; sBi; ð17Þ

where hp0
B; s

0
Bjĵνð0ÞjpB; sBi is the BF amplitude, Λ is the

Lorentz boost from the BF to the generic frame, and DðjÞ is
a Wigner rotation matrix for spin-j targets. Setting μ ¼ 0,
we see that the EF charge distribution mixes both BF
charge and current distributions. For a spinning target, the
BF current does not vanish and the EF charge distribution
receives a contribution from magnetization; see Eq. (11).

FIG. 1. Proton (top) and neutron (bottom) radial charge dis-
tributions in the Breit frame J0BðrerÞ, excluding (dashed red line)
and including (solid black line) the kinematical factor. Based on
the parametrization from Ref. [26].
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Note that this contribution does not change the total charge
of the system, and hence just redistributes it in space. In
particular, it induces a dipolar distortion of the charge
distribution when the moving nucleon is transversely
polarized [14]. A similar phenomenon explains why the
position of the center of inertia shifts sideways in a
transversely polarized moving system [29,30].
The second and more subtle effect comes from the

Wigner rotation. It is a consequence of the noncommuta-
tivity of Lorentz boosts which makes polarization an
observer-dependent concept. A given polarization in some
frame appears rotated in another, explaining why simple
relations among 3D parton distributions arise in spherically
symmetric models [31]. Similarly, the BF charge (current)
distribution is spin independent (dependent) in terms
of the BF polarization, but appears to receive a spin-
dependent (spin-independent) contribution when described
in terms of the polarization defined by an observer in
another frame.
Let us now focus on the unpolarized part of the EF

charge distribution,

ρEðb;PzÞ≡ 1

2
Tr½J0EFðb⊥;PzÞ�; ð18Þ

where the trace acts in polarization space. Since there is no
preferred direction in the transverse plane, ρE is axially
symmetric and hence written as a function of the impact
parameter b ¼ jb⊥j. Using explicit expressions for the
Dirac bilinears [32], we find for the convection and
magnetization contributions

ρXEðb;PzÞ ¼
Z

∞

0

dQ
2π

QJ0ðQbÞρ̃XEðQ;PzÞ; ð19Þ

where J0 is a cylindrical Bessel function and

ρ̃convE ðQ;PzÞ ¼
P0 þMð1þ τÞ
ðP0 þMÞð1þ τÞGEðQ2Þ;

ρ̃magn
E ðQ;PzÞ ¼

τP2
z

P0ðP0 þMÞð1þ τÞGMðQ2Þ; ð20Þ

with ρ̃E ¼ ρ̃convE þ ρ̃magn
E and P0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ð1þ τÞ þ P2

z

p
. In

particular, we see in momentum space why the BF
description ρ̃EðQ; 0Þ ¼ GEðQ2Þ= ffiffiffiffiffiffiffiffiffiffiffi

1þ τ
p

turns into the
IMF description ρ̃EðQ;∞Þ ¼ F1ðQ2Þ: It is essentially
due to a magnetization contribution arising from the
combination of a Wigner rotation and a mixing of the
four-current components under Lorentz boosts [33,34]. A
similar analysis for the magnetization shows how
GMðQ2Þ= ffiffiffiffiffiffiffiffiffiffiffi

1þ τ
p

in the BF turns into F2ðQ2Þ in the
IMF. Increasing the spin of the target will just increase
the complexity of these effects [35–37].

In Figs. 2 and 3 we show how the unpolarized 2D charge
quasidensities of the nucleons evolve with the target
momentum Pz, using the phenomenological parametriza-
tion from Ref. [26]. A decomposition into convection and
magnetization contributions reveals that the Pz dependence
essentially arises from the latter. The mild changes in the
convection contribution are entirely due to Wigner rotation
effects. The same effects explain why a magnetization

FIG. 2. Unpolarized proton 2D charge quasidensity as a
function of Pz (lower panel), decomposed into convection and
magnetization contributions (upper panels). In the Breit or rest
frame Pz ¼ 0, the charge distribution is purely convective. As Pz
increases, a large contribution induced by the rest-frame mag-
netization progressively concentrates the charge distribution
toward the center. Based on the parametrization from Ref. [26].

FIG. 3. Unpolarized neutron 2D charge quasidensity as a
function of Pz (lower panel), decomposed into convection and
magnetization contributions (upper panels). In the Breit or rest
frame Pz ¼ 0, the charge distribution is purely convective. As Pz
increases, a large contribution induced by the rest-frame mag-
netization progressively pushes the positive charges away from
the center. Based on the parametrization from Ref. [26].
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contribution, usually associated with transverse polariza-
tion, appears in the unpolarized charge distribution.
In the proton case, the rest-frame magnetization is large

and positive. The contribution it induces simply adds up to
the convection contribution and increases the charge dis-
tribution at the center by almost a factor 2 as we approach
the IMF.
The situation is more dramatic for the neutron, where the

rest-frame magnetization is large and negative. The con-
tribution it induces competes with the convection contri-
bution and gradually changes the sign at the center of the
charge distribution. Based on the phenomenological
electromagnetic FFs, we find that the center of the charge
distribution vanishes when the neutron momentum is
around Pz ¼ 1.31 GeV.
In summary, we showed that a fully relativistic and

model-independent interpretation of the electromagnetic
form factors in terms of charge and magnetization distri-
butions can be given within a phase-space approach.
Relativistic spatial distributions are quasidensities and
become strict densities only when Galilean symmetry
applies. We found that the conventional Sachs distributions
in the Breit frame require an unambiguous relativistic
kinematical correction to justify their interpretation as
rest-frame distributions. We also explained that the dis-
tortions appearing in the relativistic distributions for a
moving target are entirely due to relativistic kinematical
effects associated with spin. In particular, the appearance of
a negative region around the center of the neutron charge
distribution in the infinite-momentum frame is just a
manifestation of the contribution induced by the rest-frame
magnetization.
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