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by Computing the Topological Mass Contribution with Lattice QCD
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The infamous strong CP problem in particle physics can in principle be solved by a massless up quark.
In particular, it was hypothesized that topological effects could substantially contribute to the observed
nonzero up-quark mass without reintroducing CP violation. Alternatively to previous work using fits to
chiral perturbation theory, in this Letter, we bound the strength of the topological mass contribution with
direct lattice QCD simulations, by computing the dependence of the pion mass on the dynamical strange-
quark mass. We find that the size of the topological mass contribution is inconsistent with the massless up-
quark solution to the strong CP problem.
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Introduction.—One of the unsolved puzzles in particle
physics is the so-called strong CP problem, where CP
stands for the combined charge conjugation and parity
symmetry. In quantum chromodynamics (QCD), which is
the theory of strong interactions, the nontrivial topological
vacuum structure generates a CP-violating term

∝ θGμνG̃
μν

in the Lagrangian, where θ is an a priori unknown
parameter, G is the gluon field strength tensor, and G̃ is
its dual. However, experimentally, there is no sign of
CP violation in QCD. Instead, the strong upper bound
θ ≲ 10−10 [1–3] from measurements of the neutron electric
dipole moment leads to a severe fine-tuning problem.
There are several proposals to overcome this problem,

for instance, by postulating the existence of an axion [4–6].
A simple alternative could be the vanishing of the up-quark
massmu, which at first sight seems inconsistent with results
of current algebra. However, Refs. [7–10] pointed out that
the up-quark mass in the chiral Lagrangian has two
different contributions: a CP-violating perturbative

contribution mu and a CP-conserving nonperturbative
contribution meff from topological effects, such as instan-
tons. While mu ¼ 0 could be easily ensured by an acci-
dental symmetry [10–14], meff does not contribute to the
neutron electric dipole moment and is parametrically of
order meff ∼mdms=ΛQCD, plausibly as large as the total
required up-quark mass. Testing this simple solution to the
strong CP problem is particularly important because the
other proposed solutions, including the axion [4–6] and
Nelson-Barr [15,16] mechanisms, face several theoretical
challenges [17].
As the only tool to reliably test themu ¼ 0 proposal [10],

lattice gauge theory has determined the up-quark mass to
muð2 GeVÞ ∼ 2 MeV by fitting the light meson spectrum
with errors around 5% (see Ref. [18] for a review). As
proposed in Refs. [19,20], it would be beneficial to perform
a complementary analysis by calculating the dependence of
the pion mass on the dynamical strange-quark mass while
keeping the light quark masses fixed. This direct calcu-
lation would have the advantage of avoiding any fitting
procedures.
Lattice QCD simulations are now being performed,

taking into account the first two quark generations as
dynamical degrees of freedom. In addition, simulations are
performed at (or very close to) the physical values of the
pion, kaon, and D-meson masses [21]; and at various
values of the lattice spacing and volumes, such that
systematic effects can be studied and eventually controlled
[22,23]. Finally, the theoretically sound definitions of the
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topological charge and susceptibility on the lattice (see
Ref. [24] for a review) allow for directly accessing
topological effects related to meff .
In this Letter, we perform a cross-check of the mu > 0

hypothesis based on the proposals of Refs. [19,20]. In
particular, we compute the parameter β2=β1, which mea-
sures the strength of meff and probes the contribution of
small instantons and other topological effects to the chiral
Lagrangian. While β2=β1 is usually obtained from a
combination of low-energy constants [25], this indirect
lattice method requires chiral perturbation theory (χPT).
Using direct lattice computations instead, we obtain the
result β2=β1 ¼ 0.63ð39Þ GeV−1 by computing the depend-
ence of the pion mass on the strange-quark mass. Since a
bound significantly smaller than 5 GeV−1 provides an
exclusion of the massless up-quark hypothesis [10,20],
our result rules out this hypothesis, in accordance with
previous fits of χPT to lattice data [18,25–27].
Method.—We test the mu ¼ 0 proposal by investigating

the variation of the pion mass with respect to the strange-
quark mass. The general form of the quark-mass depend-
ence of the pion mass reads [28]

M2
π ¼ β1ðmu þmdÞ þ β2msðmu þmdÞ þ higher orders;

ð1Þ

where the first term is the first-order contribution of the
light quark masses in χPT. The second term receives
contributions both from small instantons that could mimic
a nonzero mu and from higher-order terms in χPT that are
proportional to ms, including logarithmic corrections. In
order to let topological effects explain the observed value
formu and to allow for a solution of the strongCP problem,
β2=β1 ≈ 5 GeV−1 at renormalization scale μ̄ ¼ 2 GeV in
the modified minimal subtraction scheme (MS scheme) is
required [20].
The most precise and computationally challenging test

of the ratio β2=β1 is to vary either the strange-quark mass or
the light quark mass, mu ¼ md ≡ml. For example, by
varying ms while keeping ml fixed, we obtain [19,20]

β2
β1

≈
M2

π;1 −M2
π;2

ms;1M2
π;2 −ms;2M2

π;1
; ð2Þ

where Mπ;i ¼ Mπðms;iÞ is the average pion mass as a
function of the varied strange-quark mass ms;i at fixed ml.
Note that the approximate result for β2=β1 in Eq. (2) is
independent of the up and down quark masses. Crucially,
this allows us to reliably compute β2=β1 even at larger than
physical quark masses. The higher-order corrections in
Eq. (1) reintroduce a small residual pion-mass dependence
for β2=β1 that finally needs to be cancelled by a chiral
extrapolation.
While this challenging direct method to compute the

ratio β2=β1 is independent of χPT, the more common

indirect method is to use the chiral Lagrangian. For
example, Ref. [20] used lattice data from the Flavour
Lattice Averaging Group report of 2013 [29] to estimate
β2=β1 ≃ ð1� 1Þ GeV−1, neglecting chiral logarithms and
higher-order terms in the chiral Lagrangian. To check the
consistency of our computations with the results of
Ref. [20], we have also computed β2=β1 indirectly by
using chiral fits and measuring M2

KðmsÞ, obtaining excel-
lent agreement with Ref. [20].
Lattice computation.—In this Letter, we use gauge

configurations generated by the Extended Twisted Mass
Collaboration with the Iwasaki gauge action [30] and
Wilson twisted mass fermions at maximal twist [31,32]
with up, down, strange, and charm dynamical quark
flavors. Up and down quarks are mass degenerate. All
the gauge configuration ensembles we used are listed
together with the corresponding pion- and strange-quark-
mass values in Table I. For details on how these values are
obtained, we refer to the Supplemental Material [33].
We first perform the analysis using three sets each with a

pair of ensembles (AX and AXs with X ¼ 60, 80, or 100)
without the so-called clover term in the action. Details on
the production of these ensembles can be found in
Ref. [42]. Each pair with X ¼ 60, 80, and 100 has identical
parameters apart from strange- and charm quark-mass
values, which are close to their physical values. The three
pairs have equal strange- and charm quark masses within
errors but differ in the light quark-mass value correspond-
ing to unphysically large pion-mass values of about 386,
444, and 494 MeV, respectively. The lattice spacing value
corresponds to a ¼ 0.0885ð36Þ fm [34] determined from
the pion decay constant fπ .
In addition, we use one ensemble (cA211.30.32) that

includes the clover term in the action [23]. While Wilson
twisted mass fermions at maximal twist automatically
remove discretization effects linear in the lattice spacing
a [43], and thus leave only lattice artifacts at Oða2Þ, the
clover term reduces these Oða2Þ effects even further [44].
The cA211.30.32 ensemble has a smaller pion-mass
value of about 270 MeV as well as strange- and charm

TABLE I. Pion- and strange-quark masses in physical units for
the ensembles used in this work. The strange-quark mass is
quoted at 2 GeV in the MS scheme.

Ensemble Mπ [MeV] ms [MeV]

A60 386(16) 98(4)
A60s 387(16) 79(4)
A80 444(18) 98(4)
A80s 443(18) 79(4)
A100 494(20) 100(4)
A100s 495(20) 79(4)
cA211.30.32 276(3) 99(2)
cA211.30.32l 275(3) 94(2)
cA211.30.32h 276(3) 104(2)
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quark-mass values again close to their physical values. The
lattice spacing value is a ¼ 0.0896ð10Þ fm, determined
using the nucleon mass dependence on the pion mass. This
estimation is done by employing χPT at Oðp3Þ [45,46],
where p is a typical meson momentum. Similarly to
Ref. [23], the Nf ¼ 2þ 1þ 1 nonclover twisted mass
ensembles [47] at different lattice spacings, which also
include the AX ensembles, were used to control the chiral
extrapolations.
Since the pion mass of the cA211.30.32 ensemble is

significantly smaller than the ones of the AX ensembles,
and thus closer to the physical value, we consider this
ensemble as the most appropriate one to compute our final
value of β2=β1. Moreover, cA211.30.32 uses the same
action as ensembles that are currently under production
with a physical value of the pion mass. These ensembles
could be used, in principle, in future work to repeat the
calculation presented here at the physical point. For
cA211.30.32, we have simulations for only one dynamical
strange-quark mass; thus, it is necessary to apply the so-
called reweighting technique to investigate the strange-
quark-mass dependence of Mπ while keeping the charm
and light quark masses constant [33]. We denote with
cA211.30.32l (cA211.30.32h) the reweighted ensemble
with a 5% lower (higher) strange-quark-mass value than
the original ensemble cA211.30.32.
In contrast, for the AXðsÞ ensembles, we have pairs of

ensembles with different dynamical strange-quark masses;
thus, we can use a direct approach to investigate the
strange-quark-mass dependence of Mπ . Note that in this
case also, the charm quark mass differs slightly, but its
value is so close to the cutoff that this difference will not
affect our results. While the AXðsÞ ensembles have rather
heavy pion masses (see Table I), they are ideal to test the
robustness of the reweighting procedure that we apply to
cA211.30.32. In fact, we use these ensembles to demon-
strate that reweighting works successfully [33]. In addition,
the β2=β1 values from these ensembles provide an insight
into the pion-mass dependence of β2=β1.
Results.—Using the values ofMπ and ms from Table I as

input (more precisely, the corresponding values in lattice
units [33]), we compute β2=β1 from Eq. (2). The results
from this direct approach for the three pairs A60ðsÞ, A80ðsÞ
and A100ðsÞ are compiled in Table II, where we quote
β2=β1, as well as β1 and β2 separately. Since the pion-mass
differences are all zero within errors (see Table I), we find
that β2=β1 is compatible with zero as well. Note that the
errors of the observables compiled in Table I are correlated
per ensemble. This correlation is taken into account in our
analysis for β2=β1.
Finally, we use reweighting on the cA211.30.32 ensem-

ble to vary the strange-quark mass by �5% around its
original value. The change in the pion mass with the
strange-quark mass is not significant; see Table I. The
corresponding values for β2=β1 [33] are again compiled in

Table II. Here, we denote with cA211.30.32ðhÞ the value
for β2=β1 obtained from the combination of the ensembles
cA211.30.32h and cA211.30.32. Likewise, cA211.30.32ðlÞ
is the combination of cA211.30.32 and cA211.30.32l,
while cA211.30.32ðh; lÞ is the combination of
cA211.30.32h and cA211.30.32l.
In Fig. 1, we show the values of the ratio β2=β1 at μ̄ ¼

2 GeV in the MS scheme as a function of the squared pion
mass M2

π in physical units. The three blue points at heavier
pion-mass values correspond to the three pairs of the AXðsÞ
ensembles without the clover term. The three red points at
lower pion-mass values correspond to the cA211.30.32
ensemble including the clover term. The latter three points
are slightly displaced horizontally for better legibility.
While all of the points are compatible with zero at the
1.5σ level, we observe a slight trend toward larger β2=β1
values with decreasing pion-mass values.

TABLE II. Results for β2, β1, and β2=β1 from Eq. (2) in
physical units for all ensembles at μ̄ ¼ 2 GeV in the MS scheme.

Ensemble β2 ½GeV2� β1 ½GeV3� β2=β1 ½GeV−1�
A60ðsÞ −0.0009ð08Þ 0.0029(4) −0.32ð26Þ
A80ðsÞ 0.0005(10) 0.0036(4) 0.15(30)
A100ðsÞ −0.0010ð10Þ 0.0053(6) −0.19ð19Þ
cA211.30.32ðhÞ 0.00007(11) 0.00039(5) 0.18(30)
cA211.30.32ðlÞ 0.00026(11) 0.00037(5) 0.69(33)
cA211.30.32ðh; lÞ 0.00033(12) 0.00076(5) 0.43(16)

FIG. 1. The ratio β2=β1 as a function of the squared pion mass
M2

π in physical units. The solid line with the 1σ error band
represents a linear extrapolation in M2

π . We extrapolate to the
chiral limit to eliminate higher-order corrections to β2=β1; see
Eqs. (1) and (2).
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In addition, we show in Fig. 1 a linear extrapolation of
β2=β1 in M2

π to the chiral limit. This linear dependence can
be justified with χPT, which predicts [18]

β2
β1

≈
α2

α1 þ ðα3=α1ÞM2
π
≈
α2
α1

−
α2α3
α31

M2
π ð3Þ

modulo logarithmic corrections, where α1;2;3 are combina-
tions of low-energy constants with α1 ≫ ðα3=α1ÞM2

π ,
and M2

π ¼ α1ml þOðα2;3Þ with Oðα2;3Þ=ðα1mlÞ ≈ 0.1.
Since the data points for ensemble cA211.30.32 are
highly correlated, we include only the combination of
cA211.30.32h and cA211.30.32l in the fit denoted as
cA211.30.32ðh; lÞ in Table II. The fit has χ2=d:o:f: ¼
3.28=2 (i.e., a p value of 0.2) and the chirally extrapolated
value reads β2=β1 ¼ 0.63ð25Þ GeV−1. As mentioned, we
extrapolate to the chiral limit to cancel the residual pion-
mass dependence in Eq. (3), which stems from higher-order
corrections in Eq. (1) and does not appear in the expression
for β2=β1 in Eq. (2). Our data thus confirm in hindsight that
the approximation in Eq. (2) is justified.
Discussion.—All the estimates for the ratio β2=β1 pre-

sented in this Letter are consistent with zero at the 1.5σ
level. With the chiral extrapolation explained above and
1σ statistical uncertainty, we exclude a value of 5 GeV−1

by an amount significantly larger than 10σ. The remaining
question is whether there are additional systematic uncer-
tainties that could potentially spoil this conclusion.
Let us first consider the discretization errors for β2=β1,

which are of order ðaΛQCDÞ2 multiplied by an unknown
coefficient, with ΛQCD ¼ 341ð12Þ MeV [48]. We can
reliably estimate the coefficient by using the known
continuum extrapolation values for M2

π and ms for the
AX ensembles [34]. By comparing these continuum values
to our lattice results forM2

π and ms, we can infer the size of
discretization errors at our given lattice spacing. Depending
on the scaling variable, the discretization errors in M2

π and
the strange-quark mass are both on the order of 5%–10%. If
propagated generously, this implies a 10% uncertainty on
the numerator, a 15% uncertainty on the denominator, and
thus about 20% on the ratio β2=β1. Note that this estimate is
highly conservative because most of the discretization
effects cancel in the differences in both the numerator
and the denominator. Because of the reduced lattice
artifacts with the action including the clover term (see
Supplemental Material [33]), we do not expect larger
uncertainties on the ratio for the ensemble cA211.30.32
stemming from discretization effects.
In addition, there is a residual pion-mass dependence of

β2=β1, which we account for by extrapolating to the chiral
limit. In this extrapolation, the errors stemming from
different lattice artifacts of the AX and cA211.30.32
ensembles are taken into account by the above-mentioned
20% uncertainty. Last, there are finite-size effects for Mπ

proportional to expð−MπLÞ, with L as the spatial extent of

the lattice, but no finite-size corrections to ms. Since the
strange-quark-mass dependence of Mπ is so weak, these
finite-size effects are equal for M2

π;1 and M2
π;2, and thus

cancel in the ratio β2=β1.
In summary, taking the chirally extrapolated value for

β2=β1 plus the 1σ statistical error and the 20% uncertainty
for discretization effects, we arrive at the following
conservative estimate:

β2
β1

¼ 0.63ð25Þstatð14Þsys GeV−1

¼ 0.63ð39Þ GeV−1 ð4Þ

at μ̄ ¼ 2 GeV in the MS scheme. For the final estimate, we
have added the errors linearly. Note that our data are
equally well compatible with a constant extrapolation in
M2

π , which would lead to a significantly smaller value at the
physical point. Thus, we consider Eq. (4) as a conservative
estimate. Moreover, the logarithmic corrections from
chiral perturbation theory contributing to β2=β1 (see,
e.g., Refs. [49,50]) are of the same order as our value in
Eq. (4); therefore, the topological contribution to β2=β1
should be even smaller.
Conclusion.—In this Letter, we have tested the massless

up-quark solution to the strong CP problem by directly
investigating the strange-quark-mass dependence of the
pion mass on the lattice. This allows us to determine the
ratio β2=β1, which would need to be larger than 5 GeV−1 to
solve the strong CP problem.
Since all our estimates of β2=β1 are compatible with

zero, we obtain a strong upper bound for β2=β1 including
residual uncertainties stemming from discretization errors
and chiral extrapolation. The result in Eq. (4) is clearly
incompatible with the massless up-quark solution to the
strong CP problem. This exclusion of the mu ¼ 0 solution
is consistent with previous results using χPT and direct fits
of the light meson spectrum.
Given our conservative error estimates, we consider it

highly unlikely that the factor of 5 needed to rescue the
solution to the strong CP problem is hidden in the quoted
uncertainties. A confirmation of this result using ensembles
with physical pion-mass values could be undertaken in the
future, once different values for the lattice spacing become
available for a continuum extrapolation.
Our direct lattice results also quantitatively support the

large-N picture as a good description of QCD at low scales
because the coefficient of the nonperturbatively induced
mass operator is known to be suppressed in the large-N
limit [10,19]. Thus, our computations reliably demonstrate
that the topological vacuum contributions to the chiral
Lagrangian are negligible.
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