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A number of approaches to four-dimensional quantum gravity, such as loop quantum gravity and
holography, situate areas as their fundamental variables. However, this choice of kinematics can easily lead
to gravitational dynamics peaked on flat spacetimes. We show that this is due to how regions are glued in
the gravitational path integral via a discrete spin foam model. We introduce a family of “effective” spin
foam models that incorporate a quantum area spectrum, impose gluing constraints as strongly as possible,
and leverage the discrete general relativity action to specify amplitudes. These effective spin foam models
avoid flatness in a restricted regime of the parameter space.
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Symplectic, metrical quantization.—Envisioning the
geometry of spacetime as dynamically evolving founded
the revolutionary insights of general relativity (GR) that
have resulted in direct measurements of gravitational time
dilation, bending of starlight, and gravitational waves.
However, this revolution remains incomplete. We still do
not know how to fully characterize an evolving quantum
spacetime geometry.

The quantization of spacetime geometry is an interplay
between its symplectic and metrical aspects. The former
determines the allowed phase space and its associated
quantum theory, while the latter encodes spacetime dynam-
ics. In three dimensions, alignment between these two
facets of geometry allows one to construct a discrete,
simplicial path integral for quantum gravity, the Ponzano-
Regge model [1]. Spacetime is decomposed into a large
collection of tetrahedra that are glued along a subset of
edges with matched lengths. Metrical and symplectic
aspects of this geometry nicely align: lengths encode the
intrinsic metric and tetrahedral dihedral angles encode the
extrinsic geometry, and these variables are canonically
conjugated to each other [2,3]. In the Euclidean signature
case, the angles are compact, which leads to discrete spectra
for the lengths.

In four dimensions, the situation is more subtle, and there
is some tension between the symplectic and the metrical. In
a spacetime split, the metric has two natural discretizations:
the lengths of edges and the extrinsic curvature angles
defined around two dimensional (2D) faces.

These variables are not canonically conjugate. This
forces a choice: either the lengths or the extrinsic curvature
angles must be completed to a set of canonically conjugated
coordinates.

If the lengths are chosen, then the conjugate variables are
contractions of the curvature angles with certain area-length
derivatives [4]. These variables have, so far, resisted
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rigorous quantization. Meanwhile for the curvature angles,
the conjugate variables are the 2D face areas, whose
quantization gives a discrete area spectrum; this is because
they are conjugate to compact angles. These variables arise
naturally in connection formulations of GR, like loop
quantum gravity (LQG) [5]. A key result of LQG is the
rigorous quantization of area and volume observables,
which, indeed, have discrete spectra [6-9].

In spin foam models [10-12], which are discrete
geometry path integrals derived from LQG, area variables
are fundamental. Area variables play a central role in
holography [13,14], in particular, for the reconstruction of
geometry from entanglement [15,16], and discrete area
spectra are key in many approaches to black hole entropy
counting [17-20]. There is, however, an interplay between
the choice of area variables and the dynamics of GR: in
this Letter, we show that area variables must be con-
strained to avoid a suppression of curvature and that the
discreteness of their spectra hinders sharp imposition of
these constraints.

In fact, it has been argued that, in the semiclassical limit,
flat configurations dominate the spin foam path integral
[21-27]. We reveal the mechanism behind this unfortunate
dominance and identify a more favorable regime in which
the path integral can peak on curved configurations. This
“flatness problem” has been a key open problem for spin
foams [27]. We show that it can be traced back to
fundamental, discrete, area variables.

We directly tackle the question of whether a discrete,
locally independent, area spectrum is consistent with the
dynamics of GR. To this end, we propose a family of
“effective” models that (a) incorporate a discrete area
spectrum, (b) impose the constraints between the areas
as strongly as allowed by the LQG Hilbert space structure,
and (c) use—more directly than current spin foam
models—a discretized GR action for the amplitudes.
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These eftective models allow us to show that the flatness
problem can be overcome, but to do so also imposes certain
restrictions involving the discretization scale, curvature per
triangle, and the Barbero-Immirzi parameter, which con-
trols the area spectral spacing. Future work will show
whether these restrictions are sufficient to ensure general
relativistic dynamics in the continuum limit.

Discrete, locally independent areas.—We study a path
integral for 4D quantum gravity regulated by a triangula-
tion of spacetime. We work with quantum amplitudes in
Euclidean signature, leaving the Lorentzian case to future
work. Our key assumption is that the areas have a discrete,
prescribed spectrum. We take the area eigenvalues to be
independent, that is, their values will not depend on the
state away from the measured triangle. The particular area
spectrum we work with is

a(j) =repV i+ 1) ~rt3(j +1/2), (1)

where j is a half-integer spin label, #, = \/87AG/c? is the
Planck length, y is the dimensionless Barbero-Immirzi
parameter, and ~ indicates the large-j asymptotic limit.
We focus on the equispaced asymptotic spectrum. This
form for the area spectrum was established in LQG [6-9],
but discrete areas have also been discussed in the context of
black hole spectroscopy [17]. In LQG, triangle normals are
represented by angular momentum vector operators
rescaled by y [28,29]. Thus, the area is given by the square
root of the SU(2) Casimir, multiplied by y, which deter-
mines the area eigenvalue spacing.

Before taking up the path integral, we review the use of
area variables in simplicial discretizations of GR. These
discretizations were introduced by Regge [30] and used
length variables. A wide array of reformulations have been
considered [31-36], and we use descriptive adjectives to
capture the variables used in each form. The change from
length to area variables turns out to be more subtle than one
might expect. A treatment in the more transparent context
of Regge calculus will illuminate the issues before discus-
sing the path integral.

Actions for discretized GR.—In length Regge calculus
(LRC), one replaces the metric by lengths /, assigned to the
edges e of a triangulation. The [, determine the triangle
areas A,(/), and the 4D (internal) dihedral angles 67(l) in
each four-simplex ¢. The action

Stre = Y _mmA =Y Y AH =D SI+> st (2)
t o

o 1D0 t

is a discretization of the Einstein-Hilbert action, and the
corresponding equations of motion approximate Einstein’s
equations [37]. The factor n, € {1,2} allows for triangu-
lations with boundary and is one for triangles on the
boundary and two for triangles in the bulk.

The four-simplices, which are the basic building blocks
of the triangulation, each have ten edges and ten areas.
Thus, one can (locally) invert the ten functions A,(l) that
give a simplex’s areas in terms of its lengths [38]. We will
denote the resulting functions L?(a), where a collectively
signifies the ten areas associated to ¢. This allows us to
define the area Regge calculus (ARC) action [31,32,36],
whose value on configurations with a, = A,(I) agrees with
the LRC action

Sarc = > _Si(a) +>_Si(a), (3)

where S¢(a) = n,za, and S%(a) = SL[L°(a)]. Strikingly,
freely varying the bulk areas, one finds that the deficit
angles ¢, = 2z — ) -, 07, which measure curvature, have
to vanish [36]. That is, the ARC equations of motion
impose flatness.

Extended triangulations are built up by gluing pairs of
four-simplices (c,06’) through a shared tetrahedron z.
Gluing identifies six pairs of length variables but only
four pairs of area variables, which explains why the
equations of motion for LRC and ARC differ: after gluing,
there are generically more triangles than edges in a 4D
triangulation and, thus, more area than length variables.
Restricting variation of the areas to a constraint surface
coming from a consistent length assignment a, = A,(/),
one recovers the LRC equations of motion.

From this counting, we see that, working with area
variables, we miss two matching conditions per bulk
tetrahedron. The geometry of a tetrahedron, however,
can be uniquely specified by its four areas and two 3D
dihedral angles at nonopposite edges (intriguingly, opposite
dihedral angles do not suffice). Introducing the 3D dihedral
angles ®;°(a) = ®%[L?(a)], thus, we have two constraints
per bulk tetrahedron

@5 (a) — ®L7 (a)=0. i=1,2, (4)
where (e, e,) is a choice of a pair of nonopposite edges in
7. Together with the matched areas, these constraints ensure
that the lengths of a shared tetrahedron, as defined by the
areas associated to ¢ and ¢/, match.

The constraints (4) involve pairs of neighboring sim-
plices. Introducing two 3D dihedral angles ¢ per tetra-
hedron as additional variables [35], we can formulate
alternative constraints, localized on a given four-simplex o

¢z, - O (@)=0, i=1.2, (5)
These constraints fix all variables ¢ as functions of the
areas and impose the constraints (4). We favor these
localized constraints because they preserve the additive
factorization of the action (3) and lead to the simplifying
product factorization of the path integral below, Eq. (8).
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In the quantum theory, areas are encoded using SU(2)
representation labels j,, cf. Eq. (1), which result from
identifying triangle normals with angular momentum
operators. The 3D dihedral angles are given by the inner
product of these normals and can be encoded in the
recoupling of two angular momenta. The angles at a pair
of nonopposite edges (e, e,) in a tetrahedron 7 require
different recoupling schemes and, therefore, are noncom-
mutative [39,40] (for a simplified proof see [45])

sina’  sindy’
n{gs . %} = Chy = ; 6
{ 1 2} P a, (]l + %) ( )

where " is the angle between (e, e,). Thus, the con-

straints (5) are also noncommutative, more precisely,
second class. For these second class constraints, the
uncertainty relations prevent a sharp imposition of the
constraints in the quantum theory. Armed with these
understandings, we take up the path integral.

Path integral.—To incorporate a discrete area spectrum
(1), we employ constrained ARC, and sum over spin
labels j,

Z =

D JAD] AW T 67 (). ()
{i} o

t 7€blk

The triangle A, = expliyn,z(j, +4)] and simplex ampli-
tudes A, = exp [—iy Y_,e,(J; +3)07(j)] result from the
exponentiated ARC action (3). The precise form of the
measure factor u(j) will not be important for the discussion

here, but see [46]. The factors G2° implement the con-
straints (4) and are crucial for imposing the dynamics of
LRC instead of the flat dynamics of ARC.

However, imposing the constraints (4) sharply, i.e.,
setting G2 ( J) =1 if the constraints are satisfied, and
G;"”/ (j) = 0, otherwise, leads to a severe problem: as we
allow only discrete values for the areas, the constraints (4)
constitute diophantine conditions. These conditions can
only be satisfied for a very small set of labels with
accidental symmetries, e.g., if all ten pairs of labels match
[45]. The resulting reduction in the density of states
prevents a reasonable quantum dynamics. This obstacle
has also been encountered in higher gauge formulations of
gravity [47-50].

One way out is to weaken the constraints (4), e.g., by
allowing a certain error interval. But, one has to navigate
between Scylla—reducing the density of states too
much—and Charybdis—imposing a dynamics that does
not match GR.

Here, we will take guidance from LQG and impose the
constraints as strongly as allowed by the uncertainty
relations resulting from (6). To this end, we employ states
that are coherent in the two angle variables per tetrahedron
but restrict to the eigenspaces for the area operators.

There are different constructions available for such states
[42,51-53]. For a given tetrahedron z, we will denote the
coherent states /C, (¢ : ®e), where ¢ = (¢% . ;) are
the arguments of the wave functions, and ®;° = (D¢, ;)
are the angles on which the wave function is peaked. The
coherent states come with a measure duf-(¢;,¢,), the
precise form of which is immaterial here. These coherent
states can be used to define the path integral

2 =30) [ Tl [JAOT[40.0.
{ie} 4 ! o

where the new simplex amplitude is given by

A ) = Ac(D] [IC: 165 @5 (). )

TEC

Integrating out the angles, we regain—without approxi-
mation and modulo boundary contributions [54]—a path

integral of the form (7) where the factors GZ7 are given by
inner products between coherent states peaked on the
angles in 7 induced by the areas of ¢ and o', respectively,

G2 (j) = (KL @ IK L @57 ()]). (10)

By construction, this inner product is peaked on the
matching conditions (4) and provides a precise sense in
which they are weakly imposed. Imposition of these
constraints leads to the brackets (6) and, through them,
to our main results (12) and (13). Counting the spin
configurations contained in different confidence intervals

of the GZ” factors suggests that the weak imposition of the
area constraints leads to a reasonable number of configu-
rations contributing to the path integral (7), see [45].

On the flatness problem.—We consider a first test case
for the dynamics encoded in the path integral (7). We
choose a triangulation where we can control the scale for
the bulk area variable and the bulk curvature through
the boundary data. The complex consists of three four-
simplices sharing a single bulk triangle. There are no bulk
edges, thus, no bulk variables to sum over in LRC, and the
bulk deficit angle is determined by the boundary lengths.
Nonetheless, in ARC, there is one bulk variable to sum
over, which imposes a vanishing deficit angle for the
internal triangle in the unconstrained theory.

The amplitude of the path integral consists of two pieces:
(i) an oscillatory phase factor, given by the exponentiated
ARC action and (ii) the G factors, which are peaked on the
area constraints (4) and decay exponentially. We employ
scaling arguments and approximate these factors by
Gaussians with deviation,
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o(®) ~ \/ sin "/ (jt " %) (1)

determined by the Poisson brackets (6).

The semiclassical limit, as usually understood for spin
foams, amounts to a large j limit. The reason for this is the
linear scaling of the action (3) in the areas and, thus, in the
spins j. As the amplitudes include an oscillatory and an
exponentially decaying factor, there are two conditions for
configurations to contribute [21,55]: (i) the oscillatory
phase should be stationary, and (ii) the G factors should
be near their maxima. As the oscillatory phase is given by
the exponentiated area Regge action, the stationarity con-
dition (i) leads to flatness in the unconstrained model.
A similar structure of the amplitudes and, hence, a similar
flatness problem [21-27], arises for the Engle-Pereira-
Rovelli-Livine (EPRL) and Freidel-Krasnov (FK) spin
foam models [12].

In the following, we will perform a more detailed
analysis and identify a regime in which curved configura-
tions can dominate. A bound, that has heretofore received
little attention, emerges. We distinguish the spin scales set
by the boundary, j, and by the bulk, ji.. For the minimal
triangulations investigated here j ~ jy .

Since we are interested in the semiclassical limit, we
focus on the classical action and on the exponent of the
Gaussian G factors. The small 7 limit of these exponents is
dominated by the classical values, from which our scaling
results will follow. From (11), we see that the G factors
come with a deviation ¢(®) ~ 1/4/j for the 3D dihedral
angle, where we assume that the boundary areas a ~ y£%j
have approximately equal values, so that the bulk area
scales as apy ~a. As angles are dimensionless, their
derivatives scale as 0®/dayy ~ 1/a and de/Oayy ~ 1/a.
Thus, we have O® /0y ~ 1/j and Oe/ Dy ~ 1/ j, and the
deviations of the Gaussian G factors, expressed as func-
tions of bulk spin and deficit angle €, respectively, scale as

N 0D (joik) _IXG ~'xi: :
oVt |:8jblk] (@)~ Vi \/;
o e (o) < oli le -:L

ole) ~ [Z) ] ot~ x i =)

As the angles are invariant under rescaling, we can choose
boundary data that induce a given deficit angle ¢, and then
choose a sufficiently large scale j, so that the ¢ = 0 value is
outside the deviation interval. Thus, by going to sufficiently
large spins j, the constraint part of the amplitudes can peak
sharply on nonvanishing curvatures. Note that the devia-
tions o(ju) and o(e€), as functions of j, are independent of
the spectral-spacing parameter y.

Although the G factors can be peaked on curved
configurations, the relevant summation range for the bulk
spin jy; scales with /. The oscillatory phase factor can,

1.0

1240 1260 1280 1300 1320

(b) j = 999.5

(a) j = 99.5

FIG. 1. The G factors (dashed lines), which impose the
matching conditions weakly, and the real part of the product
of the amplitude factors A, and .4, as functions of the bulk spin
Juik for various y (solid lines) and for an intermediate (a) and a
large (b) spin value. Here, the G factors peak on a curvature value
e~ 0.5. Larger y’s lead to a more oscillatory behavior. These
examples are detailed in the Supplemental Material [45].

therefore, average out the expectation value for the deficit
angle, see Fig. 1. To avoid this, we need to make sure the
oscillations are sufficiently slow

(226 - 3 2s0)

) 6 Ojm

x (i) ~ 7e/TSO(1).  (13)

Thus, whereas the scaling for the deficit angle (12) requires
a choice of larger j, (13) demands that, with growing j, we
choose smaller y and, thus, a smaller spacing between the
area eigenvalues. Taking j large and keeping y fixed—as
for the large j limit discussed above and often treated in the
literature—the phase factor will oscillate more and more
strongly and suppress the configurations on which the G
factors are peaked, see Fig. 1. These expectations are
confirmed by numerical examples in the Supplemental
Material [45].

We note that y enters (13) simply because Sagc is linear
in the a and da/dj ~y from (1). Depending on which
quantity we consider fixed, we can also interpret (13)
as a bound on the curvature per triangle € < 1/(y+/j), or a
y- and curvature dependent upper bound on the spin j.

We have considered the simplest triangulation that
differentiates between LRC and ARC. As we only employ
scaling arguments, similar conclusions may also apply for
larger triangulations. In future work, we will investigate
examples including bulk edges and vertices. Finally, to
reach definite conclusions on the continuum limit, it will be
necessary to see how the implementation of the constraints
changes under coarse graining. The models proposed here
simplify this task immensely.

Discussion.—Area operators are central in a number of
approaches to 4D quantum gravity, notably LQG and
holography. To achieve a quantum dynamics that repro-
duces GR, constraints between the areas need to hold. This
is, however, hindered if areas have an asymptotically
equispaced spectrum and are locally independent.

The imposition of these constraints is pivotal in spin
foam quantization. This leads to involved amplitudes,
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which, so far, has prevented satisfactory resolution of key
dynamical questions, most pressingly, whether the models
suppress curvature excitations. Thus, we propose to use,
instead of the standard spin foam amplitudes, a class of
effective models with a transparent encoding of the
dynamics and which are much more amenable for numeri-
cal investigations [56,57]. If it becomes clear that these
effective models lead to a gravitational dynamics in the
large scale limit, one can study the effects of using more
involved versions, including a sum over orientations or
degenerate geometries [58]. See [59] for first insights in the
3D case.

In the models proposed here, the constraints are imposed
weakly, but as strongly as allowed by the LQG Hilbert
space, from which the discrete, locally independent area
spectra result. Whether this leads to the correct dynamics is
not understood, even in much simpler models than gravity,
and should be further tested. In particular, for spin foam
models, a too weak imposition of the constraints could lead
to suppression of curvature.

We have found that curvature is not necessarily sup-
pressed. This result comes with restrictions connecting the
average area a ~ £5yj, the Barbero-Immirzi parameter 7,
and the curvature ¢, per triangle. The concentration of the
constraints on a given curvature value improves with
growing spin j, as 1/4/j, but is independent of y. Our
condition yv/je, < O(1), prefers small y and, hence, a
small spacing in the area spectrum.

In numerical examples [45], we need large spins and
small y to obtain an expectation value for the deficit angle
that well approximates the classical value. This justifies our
focus on effective models, where we replace the full spin
foam simplex amplitude with its large spin asymptotics,
which is already obtained in practice around j = 10, and is
given by the cosine (replaced here with the exponential) of
the Regge action [11,55,60,61].

It has been argued, in [62], that a double scaling limit that
takes y small and spins j large, with yj fixed, reproduces the
LRC equations of motion. Here, we also find that y should
be small and j large, but that we need for the combination
y+/Jjé€; to be of order one or smaller. This combination and
the related bound on curvature has also been identified in
[63], based on a generalized stationary phase analysis of the
EPRL-FK amplitudes. Using much simpler inputs, we have
shown that this bound does not depend on specific choices
for the spin foam amplitudes. Rather, the reason for this
bound is tied to the LQG Hilbert space and the area
spectrum it leads to.

The conclusions for the expectation value of the curvature
hold, in general, but assume that we can control the scale of
bulk spin and deficit angles, e.g., via the choice of boundary
data. This is not necessarily the case for larger triangula-
tions. To understand the continuum limit, we will have to
investigate how these arguments are impacted by coarse
graining and renormalization [64]. The investigation of

corresponding continuum actions [65], in which the geo-
metricity constraints are also imposed weakly, might elu-
cidate how these constraints behave under renormalization.

The effective model presented here is the numerically
fastest spin foam in the literature to date. All the compu-
tations for this Letter were performed on individual laptops.
The recent work [57], which uses the same triangulation,
but works with 4D BF theory was computed on 32-core
machines. No comparable computation has been carried out
for the full EPRL-FK models [12]. Effective spin foams
should make the study of coarse graining flow [64] more
feasible than for other spin foam models and will help to
establish whether LQG and spin foams allow for a
satisfactory continuum limit.
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