
 

Symmetry-Assisted Preparation of Entangled Many-Body States
on a Quantum Computer

Denis Lacroix *
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Starting from the quantum-phase-estimate (QPE) algorithm, a method is proposed to construct entangled
states that describe correlated many-body systems on quantum computers. Using operators for which the
discrete set of eigenvalues is known, the QPE approach is followed by measurements that serve as
projectors on the entangled states. These states can then be used as inputs for further quantum or hybrid
quantum-classical processing. When the operator is associated with a symmetry of the Hamiltonian, the
approach can be seen as a quantum-computer formulation of symmetry breaking followed by symmetry
restoration. The method, called discrete spectra assisted, is applied to superfluid systems. By using the
blocking technique adapted to qubits, the full spectra of a pairing Hamiltonian is obtained.
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The development of quantum devices with increasing
numbers of qubits is nowadays experiencing rapid and
exciting progress. This opens new perspectives to solve
complex problems that are out of reach of classical
computers [1,2]. The simulation of complex quantum
systems, such as many-body interacting fermions, appears
as one of the perfect playground where quantum computing
can lead to a significant boost. Quite naturally, an increas-
ing number of innovative methods are now proposed to
describe this problem on an ensemble of qubits. In recent
years, the number of applications, sometimes on real
quantum devices, is increasing rapidly not only in quantum
chemistry [3–12] but also in condensed matter [13], nuclear
physics [14–17], and in quantum field theories [18–21].
The use of quantum computers requires often to reinvent

techniques that are standardly used in classical devices.
Among the standard techniques widely used in mesoscopic
systems, the possibility to use symmetry breaking (SB) trial
wave functions followed by proper symmetry restorations
(SR) allows for including correlations beyond the pertur-
bative regime. The SB-SR strategy is, for example, a pillar
in the treatment of the nuclear many-body problem where
the number of constituents varies from very few to several
hundreds [22–25]. While the first step (SB) can be seen as a
simplification to grasp correlations, the second step (SR) is
much more demanding. In nuclear physics, the use of trial
wave packets after projection in a variational principle
(variation after projection) is at the forefront of current
capabilities of classical computers, especially if several
symmetries like particle number, angular momentum,… are
simultaneously broken [24,25]. The many-body state vec-
tors after projection correspond to the highly entangled
state. Entangled states are building blocks of many algo-
rithms used in quantum computing [1,2] and it is quite

natural to investigate if these states can be accurately
obtained or manipulated with a quantum computer. I
propose here a methodology to prepare strongly entangled
states based on the SB-SR strategy using the quantum-
phase-estimate (QPE) method.
The QPE approach that is based on the quantum Fourier

transform (QFT) [1,2] is a practical way to obtain on a
quantum computer estimates of the eigenvalues of a unitary
operatorU acting on nq qubits. This approach makes use of
a set of nr register qubits that couple to the working qubits
through a repeated applications of controlled-U gates.
Denoting by ei2πθk a given eigenvalue of U, the QPE
approach returns an approximation of the phase θ̃k, written
as a truncated binary fraction whose precision to describe
θk depends on nr. The QPE is well documented [1], and I
only give in Fig. 1 a schematic view of the QPE quantum
circuits (additional discussions on QPE can be found in
Refs. [4,26,27]). I assume that the initial state jψi is written
in the nq qubits and decomposes as jψi ¼ P

k αkjϕki,
where jϕki are eigenvectors associated with the set of
phases θk. After the inverse QFT, the state denoted by jψfi
becomes

jψfi ¼
X
k

αkjθk2nri ⊗ jϕki: ð1Þ

Here, jθk2nri should be understood as a binary string of 0
and 1 that corresponds to the binary fraction of θk truncated
at the 1=2nr term. The eigenvalue estimates are obtained
through repeated measurements of the registered qubits.
In first approximation [28], the binary number fθk2nrg is
obtained with a probability jαkj2. After the measurement,
the state is projected on one of the channels jθk2nri ⊗ jϕki.

PHYSICAL REVIEW LETTERS 125, 230502 (2020)

0031-9007=20=125(23)=230502(6) 230502-1 © 2020 American Physical Society

https://orcid.org/0000-0002-6296-2112
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.125.230502&domain=pdf&date_stamp=2020-12-02
https://doi.org/10.1103/PhysRevLett.125.230502
https://doi.org/10.1103/PhysRevLett.125.230502
https://doi.org/10.1103/PhysRevLett.125.230502
https://doi.org/10.1103/PhysRevLett.125.230502


In the present work, I propose to use the QPE approach
for operators with already known eigenvalues in order to
obtain strongly entangled states that are difficult to con-
struct on a classical computer. A Hermitian operator S
acting on the nq qubits is considered. This operator has a
finite discrete set of eigenvalues written in ascending order
as fλ0 ≤ � � � ≤ λMg. I illustrate first the approach to a
specific situation where the set of eigenvalues can be
connected to a set of integers fm0 ≤ � � � ≤ mMg through
a linear relation λk ¼ amk, where a is a constant. This
example is particularly important because it includes
operators that are linked to symmetries such as parity,
particle number or angular momentum operators. The
generalization to a more general class of operators is
discussed below. For the restricted class of operator, I
define the unitary operator US as

US ¼ exp

�
2πi

�
S − λ0
a2n0

��
: ð2Þ

The phase associated with each eigenvalue of US is given
by θk ¼ ðmk −m0Þ=2n0. Imposing θk < 1 for all eigenval-
ues leads to the condition n0 > lnðmk −m0Þ= ln 2. θk is
then automatically exactly written as a binary fraction
truncated at the n0 term. When applying the QPE approach
for S, an optimal choice for the number of register qubits is
nr ¼ n0, with

nr − 1 ≤ lnðmk −m0Þ= ln 2 < nr: ð3Þ

In the following applications, the lowest (optimal) value of
nr for which the conditions are verified is used as well as
nr ¼ n0. Taking higher values of nr will lead to useless
register qubits. Lower values are a priori possible but this
will degrade the selectivity of the states after the measure-
ment. With this optimal choice, the binary strings entering
in the registered components of Eq. (1) are directly those
corresponding to the ðmk −m0Þ values.
The specific choice of US given by Eq. (1) with the

optimal value of nr is particularly suitable for selecting the
component jϕki associated with the eigenvalue mk [29].

Indeed, since the phases θk ¼ ðmk −m0Þ=2nr exactly write
as truncated binary fractions, there is no pollution from
other contributions in an ideal quantum device. The
ultimate goal of the approach is to obtain after measure-
ments the set of states jϕki. These states might have highly
nontrivial properties depending on the choice of the
operator S. They can then be used in a second step for
further quantum and/or hybrid processing like in the
variational quantum eigenvalue (VQE) method [30,31].
Since the present approach is based on the use of known
discretized spectra for specific operators, I call it the
discrete spectra assisted (DSA) approach in the following.
I illustrate below that symmetry restoration can be achieved
using this technology. Interesting discussions on symmetry
restoration within quantum computers can be found in
Refs. [32–37]. The full protocol proposed here is illustrated
in Fig. 1. An initial state with some broken symmetry is
prepared on the working qubits. An operator S associated to
the symmetry we aim to restore is then chosen and the QPE
is applied toUS. The register qubits repeated measurements
lead to a set of states that respect the symmetry. The last
step replaces the symmetry restoration process.
The methodology is illustrated here for the Uð1Þ

symmetry associated with particle number. This symmetry
breaking, used in the BCS or Hartree-Fock Bogolyubov
(HFB) theories, is particularly powerful to account for
superfluidity but a precise description of finite systems
can only be achieved once the symmetry is restored
[23,38–41]. The goal here is to describe many-body
systems, it is then convenient to introduce a single-particle
basis associated with creation or annihilation operators
ða†j ; ajÞ. The mapping between single-particle states to
qubits is made by using the Jordan-Wigner transformation
(JWT) [4,14,42–45] with the convention

a†j → Qþ
j ⊗ Z<

j−1; ð4Þ

whereQþ
j ¼ 1

2
ðXj− iYjÞ and Z<

j−1 ¼ ⊗
j−1

k¼1
ð−ZkÞ. ðXj, Yj, ZjÞ

together with the identity Ij are the standard unary gates
applied to the qubit j. A natural choice for S for the Uð1Þ
symmetry is to take the equivalent to the particle number
operator N̂ ¼ P

i a
†
i ai. This operator, counts the number of

occupied qubits in the nq basis. With the convention (4), it
is given by N̂ ¼ P

j Q
þ
j Qj ¼ 1

2

P
jðIj − ZjÞ. The operator

defined in Eq. (2) is denoted simply as UN below. It can be
decomposed as a product of operators acting on each qubit
UN ¼ Q

j Uj, whereUj acts on the qubit j [46] and is given
by Ui ¼ j0iih0ij þ expðiπ=2n0−1Þj1iih1ij.
The application of the methodology with UN gives

access to the probability distribution of the number of
occupied qubits in the initial state jψi, the so-called
counting statistics in many-body systems (see, for instance,
Ref. [47] and references therein). For qubits, I call this

FIG. 1. Illustration of the protocol proposed here to prepare a
strongly entangled state in a quantum computer using the DSA
method. The starting configuration (blue box) is a stateP

k αkjϕki and a set of register qubits. The QPE is applied using
an operator US with known discrete spectra (red box). The
measurement of register qubits acts as a projector on a set of
entangled states that are eigenvectors of the operator US (green
box). The state can then be used for postprocessing (black box).
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distribution qubit counting statistics (QCS). Note that the
components of the registered qubits prior to the inverse
QFT (see Fig. 1) give access to the generating function of
the QCS [47].
As a first illustration, some QCS obtained numerically

with the IBMQiskit toolkit [48] using the protocol of Fig. 1
are shown in Fig. 2. In these examples, the initial states are
obtained from a coherent Y rotation of all working qubits
with jψi ¼ ⊗

nq
Rj
YðφÞj0ji, where Rj

YðφÞ ¼ e−iφYj=2. In these

ideal calculations, I numerically obtained that the QCS
probability PðAÞ to have A occupied qubits in the nq qubits
properly identifies with PðAÞ ¼ CA

nqp
Að1 − pÞnq−A where

p ¼ sin2ðφ=2Þ.
In panels (b)–(d) of Fig. 2, results of the DSA method

obtained with a real 5-qubit quantum device are also shown
in black, and compared to the ideal case. Deviations from
the ideal quantum emulator case sign the effect of noise.
Nevertheless, the fact that the trends in the QCS are
globally reproduced is rather encouraging for the future
use of the approach in the noisy intermediate-scale quan-
tum (NISQ) context. Note that I also performed tests on the
15-qubit device provided in IBM Q and the results were
essentially compatible with a white noise.
With the aim of (i) validating the full method including

the postprocessing after measurement and (ii) illustrating
the powerfulness of the approach, I apply the technique to
describe a set of nq fermions interacting through the pairing
Hamiltonian [38–41]:

HP ¼
X
i>0

εiða†i ai þ a†ī aīÞ − g
X
i;j>0

a†i a
†
ī aj̄aj: ð5Þ

ði; īÞ denotes a pair of time-reversed states, and i > 0
means that summations are made on pair labels. Note that
here ði; īÞ labels a pair of states in the Fermion Fock space.
The Hamiltonian is highly nonlocal since each pair
interacts with all other pairs. It was already considered
in Ref. [27] for quantum computation using the standard
QPE technique. The Hilbert space is mapped to a set of
qubits n ¼ 1;…; nq using the JWT technique. By con-
vention, it is assumed here that if i is described by the qubit
n, then its time-reversed state ī is described by the qubit
nþ 1, such that a†i a

†
ī → Qþ

n Q
þ
nþ1.

I consider below the degenerate case ðεi ¼ ε ¼ 0Þ for
which the energy of the eigenstates with A particles is
known analytically and is given by [41]

E=g ¼ −
1

4
ðA − νÞð2nq − A − ν − 2Þ: ð6Þ

This equation holds for odd or even particle numbers. ν
denotes the number of broken pairs ði; īÞ in the eigenstates,
which is the so-called seniority (for more details on the
seniority see, for instance, Refs. [22,41]). Increasing the
values of ν gives access to the different excited-state
energies for a fixed A.
We first need to specify a convenient initial state jψi.

Guided by the BCS/HFB approach [23], a Gaussian state
breaking the Uð1Þ symmetry is considered:

jψi ¼
Y
n>0

eiφðXnYnþ1þYnXnþ1Þ=2j−i; ð7Þ

where j−i ¼ j0;…; 0inq . A general quantum circuit to
obtain this state is given in Ref. [49] (see also
Ref. [50]). A simpler circuit is used here noting that

jψi¼
Y
n

�
cos

�
φ

2

�
In⊗ Inþ1þsin

�
φ

2

�
Qþ

n Q
þ
nþ1

�
j−i; ð8Þ

where the product is made on even n only. For a given pair,
the state ½cos ðφ=2Þj00i þ sin ðφ=2Þj11i� is produced. This
state, interpreted as a generalized Bell state, is obtained
by applying the simple circuit shown in Fig. 3(c) to all
ðn; nþ 1Þ pairs.

(a) (b)

(c)

(d)

FIG. 2. (a) Illustration of the QCS obtained using the DSA
approach with the UN operator for the state jψi ¼ ⊗

nq
Rj
YðφÞj0ji

for nq ¼ 6 and with φ ¼ π=4 (green), φ ¼ π=2 (blue), and φ ¼
3π=4 (pink). The x axis corresponds to the binary fraction A=2nr
where A is the particle number. In this illustration, nr ¼ 3 and, for
instance, A ¼ 6 particles give 6=8 ¼ 1=2þ 1=4þ 0=8≡ ½110�.
In panels (b),(c), and (d) the results of the DSA method obtained
with the Qiskit software are shown for nq ¼ 3 and nr ¼ 2 for
φ ¼ π=4, φ ¼ π=2, and φ ¼ 3π=4, respectively. In these panels,
the results obtained using the IBM Q 5-qubits “ibmq_vigo” real
device with 2048 events are systematically shown in black.

(a) (b) (c)

FIG. 3. Illustration of the 3 circuits used in the text to prepare a
pair of time-reversed states.
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The DSA approach is applied to the state (8) usingUN as
a filter. For each measurement, labeled by (λ), a specific
string of 0 or 1 is measured for the register qubits. The
measured binary string equals AðλÞ=2nr where AðλÞ is the
particle number of the event. After the measurement, a set

of states jψ ðλÞ
f i is obtained in the working qubit basis, each

of them having exactly the particle number AðλÞ. A hybrid
calculation is then performed by computing on a classical

computer the energy EðλÞ ¼ hψ ðλÞ
f jHPjψ ðλÞ

f i. The statistical
ensemble of energies obtained in a single run is displayed
in Fig. 4. The ground-state (GS) energies of all even particle
numbers as given by Eq. (6) with ν ¼ 0 are recovered in
this run, illustrating the advantage of quantum parallelism.
For the degenerate case, unless the specific situation
φ ¼ kπ is considered, all eigenvalues are obtained from
a single value of φ and only the probability distributions
displayed in panels (b) and (c) of Fig. 4 depend on φ. This
method can be generalized to treat a more complex pairing
Hamiltonian by allowing Y rotation with different angles
φn for different pairs. The set of fφng can then be used as
variational parameters to construct highly entangled states
that can be used, for instance, in a VQE algorithm.
I finally show in Fig. 5 that the blocking technique

sometimes used in superfluid systems [22] can easily be
transposed to qubit systems to access excited states in odd
or even systems. One or several pairs can be broken by
replacing the circuits (c) displayed in Fig. 3 by the circuit
(b). The correlations between the AðλÞ and EðλÞ obtained by
breaking from 1 to nq=2 pairs is shown in Fig. 5. Imposing
one broken pair gives the GS energy of odd systems while
breaking two pairs gives the first excited state in even
system. Breaking more and more pairs finally gives the full

odd-even spectra. There exists a large flexibility to be
explored to access selected parts of the spectra with various
particle numbers. I show in Fig. 5 that the GS energy of
both odd and even systems can be simultaneously obtained
by replacing simply for one pair the circuit (c) by the
circuit (a) of Fig. 3.
In summary, an approach to obtain strongly entangled

states that might be useful to describe interacting systems
on a quantum computer is presented here. Starting from an
operator having a known discrete spectra, the QPE
approach is used to obtain an ensemble of entangled states.
When the operator is related to a symmetry of the
Hamiltonian, the protocol proposed here can be interpreted
as a quantum computer equivalent to the SB-SR approach
that is a powerful tool to describe static and dynamical
properties of interacting mesoscopic systems [22,23,
51–55]. The DSA method can be applied even if the linear
condition λk ¼ amk is relaxed by introducing the operator
US ¼ exp f2πiðS − λ0Þ=Δg with Δ ¼ λM − λ0 þ ε. ε is a
small number insuring that the eigenvalues of US, given
by ei2πθk, verify θk ¼ ðλk − λ0Þ=Δ < 1. Since in general
the fθkg will not be written exactly as a truncated binary
fraction, the application of the DSA approach is anti-
cipated to require more register qubits in order to dis-
criminate all channels. One can introduce the quantity
θd ¼ d=Δ and its binary fraction θd ¼ 0.x1x2 � � �, where
d ¼ min0≤k<Mðλkþ1 − λkÞ. Assuming that xm is the first
nonzero value in the binary fraction expansion, a minimal
condition is then nr > m. Multiple projections of commut-
ing operators can also be made at the price of increasing
the number of register qubits. The restoration of broken
symmetries is a pillar in the treatment of complex

FIG. 4. Panel (a): Correlation between the energies EðλÞ and
particle number AðλÞ obtained with the IBM Qiskit emulator [48]
for 200 events using the DSA method for nq ¼ 12 qubits (6 pairs)
with 3 register qubits and φ ¼ π=2. The distribution of counts for
the particle number and energies are shown, respectively, in
panels (b) and (c).

FIG. 5. Energies obtained for nq ¼ 12 by replacing the circuits
(c) displayed in Fig. 3 by the circuit (b) for an increasing number
of pairs. The number of replacements then corresponds to the
seniority value. Results have been obtained using the IBM Qiskit
simulator [48] with 200 events and nq ¼ 12 working qubits. For
even particle numbers, ν ¼ 0 (blue filled circles), 2 (green filled
triangles), 4 (cyan filled squares), 6 (purple star) are shown. For
odd particle numbers, ν ¼ 1 (open red squares), 3 (open gray
diamond), 5 (open pink triangle) are shown. The dashed lines
correspond to the analytical result (6) with different seniority
values. Even (odd) seniorities are shown with gray (pink) dashed
lines. The black line connects the results obtained by replacing
for one pair the circuit (c) by the circuit (a).
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interacting systems beyond the perturbative regime. The
state of the art is to use it in the variation-after-projection
(VAP) version [22,25,56] or used to propose novel many-
body techniques [51,57,58]. In the VAP and in these new
techniques, the projection becomes intractable especially
when several symmetries are simultaneously restored as it
may happen, for example, in nuclei. The possibility to
perform multiple projections on a quantum computers open
perspectives in this context.
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