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Quantum teleportation provides a way to transmit unknown quantum states from one location to another.
In the quantum world, multilevel systems which enable high-dimensional systems are more prevalent.
Therefore, to completely rebuild the quantum states of a single particle remotely, one needs to teleport
multilevel (high-dimensional) states. Here, we demonstrate the teleportation of high-dimensional states in a
three-dimensional six-photon system. We exploit the spatial mode of a single photon as the high-
dimensional system, use two auxiliary entangled photons to realize a deterministic three-dimensional Bell
state measurement. The fidelity of teleportation process matrix is F ¼ 0.596� 0.037. Through this process
matrix, we can prove that our teleportation is both nonclassical and genuine three dimensional. Our work
paves the way to rebuild complex quantum systems remotely and to construct complex quantum networks.
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Quantum teleportation [1,2] enables the rebuilding of
arbitrary unknown quantum states without the transmission
of a real particle. Previous efforts have shown the capability
to rebuild qubit states and continuous variable states.
Discrete variable states [3–9] and continuous variable states
[10–13] in 1 degree of freedom have been transported.
Recent work has also demonstrated the capability of tele-
porting multiple degrees of freedom of a single photon [14].
However, to teleport quantum states of a real particle, for
example, a single photon, one needs to consider not only the
two-level states (polarization), but also those multilevel
states. For example, the orbital angular momentum [15,16],
the temporal mode [17], the frequency mode [18], and the
spatial mode [19–22] of a single photon are all natural
attributes of multilevel states, which are exploited as
high-dimensional systems. However, to teleport high-
dimensional quantum states is still a challenge for two
reasons. One is the generation of high-quality high-
dimensional entanglement feasible for quantum teleporta-
tion. There has been much work on high-dimensional
entanglement generation [15–22], including attempts to
observe interference between different high-dimensional
entangled pairs [23,24]. Nevertheless, the interference
visibility between different pairs is still quite low at
63.5%. The other concerns performing a deterministic
high-dimensional Bell state measurement (HDBSM).
Here, we use the spatial mode (path) to encode the three-
dimensional states that has been demonstrated to extremely
high fidelity [20] and use an auxiliary entangled photon pair
to perform the HDBSM. We thereby overcome these

obstacles and demonstrate the teleportation of a three-
dimensional quantum state using the spatial mode of a
single photon.
Suppose Alice wishes to teleport to Bob the quantum

state of a single photon (photon 1, Fig. 1), encoded in the
path mode as

jφi ¼ αj0i þ βj1i þ γj2i; ð1Þ
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FIG. 1. Scheme for quantum teleportation of the high-
dimensional states of a single photon. Alice wishes to teleport
the high-dimensional quantum state of single photon 1 to Bob.
Initially, Alice and Bob share a three-dimensional entangled
photon pair 2–3. Then, Alice performs a high-dimensional Bell
state measurement (HDBSM) assisted by another entangled
photon pair 4–5 and sends the results to Bob through a classical
channel. Finally, according to the results of HDBSM, Bob applies
the appropriate three-dimensional Pauli operations on photon 3 to
convert it into the original state of photon 1.
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where j0i, j1i, and j2i denote the path degree of freedom
(DOF). This DOF exists in an infinite dimensional space of
the photonic system; here, we take only three dimensions as
an example. The coefficients α, β, and γ are complex
numbers satisfying jαj2 þ jβj2 þ jγj2 ¼ 1. Alice and Bob
initially need to share a high-dimensional entangled photon
pair (photons 2 and 3) in path

jξi23 ¼ ðj00i23 þ j11i23 þ j22i23Þ=
ffiffiffi
3

p
: ð2Þ

Then, Alice performs a two-particle HDBSM on photons
1 and 2, which projects the two-photon state onto the basis
of the nine orthogonal three-dimensional Bell states and
discriminates one of them,

jψ00i ¼ ðj00i þ j11i þ j22iÞ=
ffiffiffi
3

p
;

jψ10i ¼ ðj00i þ e2πi=3j11i þ e4πi=3j22iÞ=
ffiffiffi
3

p
;

jψ20i ¼ ðj00i þ e4πi=3j11i þ e2πi=3j22iÞ=
ffiffiffi
3

p
;

jψ01i ¼ ðj01i þ j12i þ j20iÞ=
ffiffiffi
3

p
;

jψ11i ¼ ðj01i þ e2πi=3j12i þ e4πi=3j20iÞ=
ffiffiffi
3

p
;

jψ21i ¼ ðj01i þ e4πi=3j12i þ e2πi=3j20iÞ=
ffiffiffi
3

p
;

jψ02i ¼ ðj02i þ j10i þ j21iÞ=
ffiffiffi
3

p
;

jψ12i ¼ ðj02i þ e2πi=3j10i þ e4πi=3j21iÞ=
ffiffiffi
3

p
;

jψ22i ¼ ðj02i þ e4πi=3j10i þ e2πi=3j21iÞ=
ffiffiffi
3

p
: ð3Þ

After the HDBSM, photons 1 and 2 are projected onto
the state jψ00i with a probability of 1=9, then photon 3 is
projected onto state jφi. For instances where photons 1 and
2 are projected onto the other eight three-dimensional Bell
states, Bob needs to perform a three-dimensional unitary
operation on photon 3 to rotate the state of photon 3 to jφi
according to the measurement results of photons 1 and 2.
However, HDBSM is still a challenge with linear optics

[25,26]. Although one can classify high-dimensional
entangled states into several categories [27,28], one cannot
identify any of them. The possible solution to this HDBSM
is to introduce an auxiliary system. Here, we introduce a pair
of assistant entangled photons to complete the HDBSM.
The Bell state measurement (BSM) of a two-dimensional

polarized state is divided into two steps [29]. The
four Bell states are first divided into two categories
(ðjHHi � jVViÞ= ffiffiffi

2
p

and ðjHVi � jVHiÞ= ffiffiffi
2

p
) by a polar-

izing beam splitter (PBS) according to classical terms.
Second, the two states are distinguished with different
phases by projecting onto basis jH � Vi= ffiffiffi

2
p

. The structure
of HDBSM in our system is similar to that of qubit
polarized BSM. According to classical terms, nine three-
dimensional Bell states are divided into three categories,
then, the localized projection measurement is used to
identify the three-dimensional Bell states.

Figure 2 illustrates our linear optical scheme for tele-
porting the three-dimensional quantum states. The first
step is to divide nine Bell states into three categories
according to classical terms ji; ii, ji; iþ 1i, and ji; iþ 2i,
i ∈ f0; 1; 2g under modulo-3 arithmetic. Photons 1 and 2
are sent to a PBS, which transmits horizontally polarized
terms (jHi) and reflects vertically polarized terms (jVi). In
the three-dimensional path state, we control the polariza-
tion of each path to satisfy (j0i ⇀ jHi, j1i ⇀ jVi, and
j2i ⇀ jHi). After the PBS, we postselect the event in
which there is one and only one photon in each outport. For
the nine classical terms of the three-dimensional Bell states
(ji; ji, i; j ∈ f0; 1; 2gÞ, five of them are selected (ji; ji with
iþ j even).
The second step is to use a local projection measurement

to determine which Bell state is postselected through jψ00i,
jψ10i and jψ20i (here, terms j20i and j02i are noise terms
and are cancelled later). We can construct an arbitrary
single qutrit basis (e.g., ðj0i þ j1i þ j2iÞ= ffiffiffi

3
p

) by half-
wave plates (HWPs), beam displacers (BDs) and PBSs, so
that we can determine whether the measured state is jψ00i
by measuring this basis on both sides [20].
To cancel the disturbance terms (j20i and j02i), we

introduce another entangled photon pair [30]. Hence, we
can distinguish at least one Bell state deterministically. For
Bell states jψ10i and jψ20i, we need to select different local
projection measurements. Finally, we have teleported a
three-dimensional quantum state with a success probability
of 1=54. To increase the success probability, we use the
nonmaximally entangled state ð2j00i þ 2j11i þ j22iÞ=3 to
replace the maximally entangled state jξi23, and adjust the
measurement base on HDBSM correspondingly, this
increases the success probability of teleportation to 1=18
while does not affect the fidelity [30]. This method of
completing HDBSM in linear optical systems can be
extended to higher dimensions and can be applied to
different degrees of freedom such as orbital angular momen-
tum (OAM). For d-dimensional systems, we only need
⌈ log2ðdÞ⌉ − 1 pairs of auxiliary entangled photons [30].
The implementation of the HDBSM requires Hong-Ou-

Mandel (HOM)-type interference between indistinguish-
able single photons with good temporal, spatial, and
spectral overlap. We use a narrow band interference filter
(3 nm) and a single-mode fiber to improve the visibility of
HOM interference. For photon 3 and photon t, we use a
broadband interference filter (8 nm) to increase the coinci-
dence efficiency.
The verification of the teleportation results relies on the

coincidence events of six photons. To suppress the
statistical error, the data collection time is tens of hours.
Hence, the stability of the whole system becomes a crucial
aspect for the experiment. In our system, the HOM
interference between the different photons is stable enough
[34,35], whereas the interference between different spatial
modes after passing through the single-mode fibers is not.
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Here, we use a fiber phase locking system [30] to maintain
a phase-stable interferometer. The measured interference
visibility remained above 0.98 in 45 h [30].
We prepared ten different initial states to be teleported:

jφ1i ¼ j0i, jφ2i ¼ j1i, jφ3i ¼ j2i, jφ4i ¼ ðj0i þ j1iÞ= ffiffiffi
2

p
,

jφ5i ¼ ðj0i þ ij1iÞ= ffiffiffi
2

p
, jφ6i ¼ ðj0i þ j2iÞ= ffiffiffi

2
p

, jφ7i ¼
ðj0i þ ij2iÞ= ffiffiffi

2
p

, jφ8i ¼ ðj1i þ j2iÞ= ffiffiffi
2

p
, jφ9i ¼

ðj1i þ ij2iÞ= ffiffiffi
2

p
, and jφ10i ¼ ðj0i þ j1i þ j2iÞ= ffiffiffi

3
p

. The
first nine states (jφ1i–jφ9i) constitute a complete orthogo-
nal basis in three-dimensional space; the last state jφ10i is a
linear-dependent superposition of quantum states in this
space. All these states are prepared by the BDs, QWPs,
and HWPs.
To evaluate the performance of the high-dimensional

teleportation, we reconstruct the density matrix of
jφ1i − jφ10i by state tomography. Conditioned on the
detection of the trigger photon and the four-photon coinci-
dence after the HDBSM, we registered the photon counts of
teleported photon 1. As shown in Fig. 3, the average fidelity
of states jφ1i − jφ10i is F ¼ 0.685� 0.027, which
is significantly higher than that of qutrit nonclassical
teleportation bound (>0.5 [36,37]).
All reported data are the raw data without background

subtraction. The main sources of error include double
pair emission, imperfect initial states, entanglement of
photons 2–3 and 4–5, two-photon interference, and phase
stabilization. We note that the teleportation fidelities of the
states are affected differently by errors from the various
sources. The fidelity of jφ1i − jφ3i is higher than that of
jφ4i − jφ10i. The reason is that imperfect interference does
not affect the first three quantum states, but the latter.
The first nine states (jφ1i − jφ9i) are a set complete

basis for three-dimensional tomography. The reconstructed
density matrices of the teleported quantum states allow us
to fully characterize the teleportation procedure by

quantum process tomography [39]. We can completely
describe the effect of teleportation on the input states
ρideal by determining the process matrix χ, defined by
ρ ¼ P

8
l;k¼0 χlkσlρidealσk, where σ0 − σ8 are the Pauli

matrices for three dimension [38]. The ideal process matrix
of quantum teleportation χideal has only one nonzero
component ðχidealÞ00 ¼ 1, represents that the process of
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FIG. 2. Experimental setup for teleporting a qutrit state of a single photon. A pulsed ultraviolet (UV) laser is focused on three sets of β-
barium borate (BBO) crystals and produces three photon pairs in 2–3, 1 − t, and 4–5. The first pair, 2–3, is qutrit-qutrit entanglement in
path DOF shared by Alice and Bob. The second pair, 1 − t, photon 1 is initialized in various states (jφ1i − jφ10i) to be teleported,
triggered by its twisted photon t. The third pair, 4–5, is a polarization-entangled state, used as an ancillary pair for performing a HDBSM
on photons 1 and 2.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10

ytil nedi
F

State

FIG. 3. Experimental results for quantum teleportation of three-
dimensional single photon states jφ1i − jφ10i. We reconstruct the
density matrix of the three-dimensional states by state tomogra-
phy [38], and then obtain the fidelity of each state. Density
matrix of the qutrits is reconstructed from a set of 9 measure-
ments represented by operators ui (with i ¼ 1, 2;…9) and
ui ¼ jΨiihΨij. Kets jΨii are selected from the following
setting j0i; j1i; j2i; ðj0iþ j1iÞ ffiffiffi

2
p

; ðj0iþ ij1iÞ ffiffiffi
2

p
; ðj0iþ j2iÞ ffiffiffi

2
p

;
ðj0iþ ij2iÞ ffiffiffi

2
p

; ðj1iþ j2iÞ ffiffiffi
2

p
; ðj1iþ ij2iÞ ffiffiffi

2
p

. Average fidelity
(F ¼ 0.685� 0.027) of 10 states is significantly higher than
that of nonclassical quantum teleportation bound (0.5). Error bars
are calculated from Poissonian counting statistics of the raw
detection events.
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teleportation is perfect. Figure 4 shows the real and
imaginary components of χ for quantum teleportation
based on our experimental results, respectively. The proc-
ess fidelity of our experiment was fprocess ¼ TrðχidealχÞ ¼
0.596� 0.037.
In general, to demonstrate that the three-dimensional

teleportation is nonclassical using average fidelity, one need
to measure 12 states from four mutually unbiased bases
settings (jψ1i − jψ12i) [30,40]. In the three-dimensional
case, the lower bound of average fidelity for nonclassical
teleportation is 0.5. This condition can be converted to
process fidelity [41] and the lower bound of process fidelity
is 1=3. In our experiment, the measured process fidelity is
fprocess ¼ 0.596� 0.037, which is 7 standard deviations
above the fidelity of 1=3, and proves that our teleportation is
nonclassical.
For high-dimensional teleportation, it is not enough to

only prove that teleportation is nonclassical. Genuine
d-dimensional teleportation should be distinguished from
the low dimensional case, excluding the hypothesis that the
teleportation can be expressed in a smaller dimension. In
our case, we need to exclude qubit and make sure that we
have completed the genuine three-dimensional teleporta-
tion. In Ref. [42], two-dimensional states are transmitted, it
is found that the maximum fidelity with state ðj0i þ j1i þ
j2iÞ= ffiffiffi

3
p

is 2=3. Therefore, quantum states with fidelity
more than 2=3 are genuine three-dimensional states.
However, this is a sufficient but not a necessary condition.
For some states (like

ffiffiffiffiffiffiffiffi
1=8

p j0i þ ffiffiffiffiffiffiffiffi
1=8

p j1i − ffiffiffiffiffiffiffiffi
3=4

p j2i),
the fidelity cannot reach 2=3, but they are still genuine
three-dimensional coherent superposition states. If some-
one who can transmit all qubit states is unable to simulate a
teleportation, then it is reasonable to say that the telepor-
tation performed is genuine three dimensional. We assume

that the qubit state [ρqubit ¼ ðP1ρ01 þ P2ρ02 þ P3ρ12)] is
incoherent at different subspaces (fj0i; j1ig; fj0i; j2ig;
fj1i; j2ig). If we cannot use this qubit state to simulate
the state after teleportation, then we prove that our
teleportation state is in the state of three levels of coherent
superposition. First, we derive a nonlinear criterion [30],
which is more powerful than the fidelity criterion. This
criterion can be used to determine states like

ffiffiffiffiffiffiffiffi
1=8

p j0i þffiffiffiffiffiffiffiffi
1=8

p j1i − ffiffiffiffiffiffiffiffi
3=4

p j2i are genuine three-dimensional states.
Of course, this criterion is still not a necessary and
sufficient condition. We define the robustness (μ) [43] of
the genuine three-dimensional state. The optimal solution
μ� of this problem gives the minimum amount of “white
noise” that has to be added to the qutrit state such that the
mixture can be simulated by qubit states [30]. If μ > 0, we
can certify that this state is a genuine three-dimensional
state. On the contrary, if μ ¼ 0, the state is not a genuine
three-dimensional state. We choose 400 maximum coherent
superposition states [1=

ffiffiffi
3

p ðj0i þ eiφ1 j1i þ eiφ2 j2iÞ, where
φ1;φ2 are 20 phases at equal interval in ½0; πÞ] as the input
states, and then through the evolution of χ matrix. After the
semidefinite program, we find that 149 states can be
simulated by qubit, while 251 states cannot be simulated.
The average μ of these states that can not be simulated is
μ ¼ 0.111� 0.034 > 0. This means that within three
standard deviation ranges, using qubit states cannot sim-
ulate our teleportation process. This result can prove that
our teleportation is beyond qubit. All the errors are obtained
by raw data through the Monte Carlo method, in which all
the generated data have the same Poissonian error as the
raw data.
In summary, we have reported the quantum teleportation

of high-dimensional quantum states of a single quantum
particle, demonstrating the capability to control coherently

(a) (b)

FIG. 4. Quantum process tomography of three-dimensional quantum teleportation. (a),(b), The real [ReðχlkÞ] and imaginary [ImðχlkÞ]
values of the components of the reconstructed quantum process matrix, with l, k ¼ 0, 1, 2,..., 8. The results of the state tomography of
the nine teleported states, jφ1i − jφ9i, are employed to reconstruct the process matrix of teleportation. The operator σ0 − σ8 are Pauli
matrices in three dimensions. For the ideal case, the only nonzero component of the process matrix of quantum teleportation, χideal, is
ðχidealÞ00 ¼ 1, which is indicated by the transparent column.
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and teleport simultaneously a high-dimensional state of a
single object. The generation of a high-quality high-
dimensional multiphoton state will stimulate the research
on high-dimensional quantum information tasks, and
entanglement-assisted methods for HDBSM are feasible
for other high-dimensional quantum information tasks.
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