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Quantum mechanics challenges our intuition on the cause-effect relations in nature. Some fundamental
concepts, including Reichenbach’s common cause principle or the notion of local realism, have to be
reconsidered. Traditionally, this is witnessed by the violation of a Bell inequality. But are Bell inequalities
the only signature of the incompatibility between quantum correlations and causality theory? Motivated by
this question, we introduce a general framework able to estimate causal influences between two variables,
without the need of interventions and irrespectively of the classical, quantum, or even postquantum nature
of a common cause. In particular, by considering the simplest instrumental scenario—for which violation
of Bell inequalities is not possible—we show that every pure bipartite entangled state violates the classical
bounds on causal influence, thus, answering in negative to the posed question and opening a new venue to
explore the role of causality within quantum theory.
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Introduction.—Estimating relations of cause and effect
are central and, yet, one of the most challenging goals of
science. Since long ago, it has been realized that correla-
tions do not imply causation. The reason is that any
correlation observed between two or more random varia-
bles can, at least in the classical regime, be explained by a
potentially unobserved common cause. Understanding
under which conditions such confounding factors can be
controlled, such that empirical data can be turned into a
causal hypothesis, has found a firm theoretical basis with
the establishment of the mathematical theory of causality
[1,2]. Today, concepts like interventions, randomized con-
trolled experiments, and instrumental variables are
common work tools in the estimation of causal influences
in a variety of fields [3–7].
Despite its success, all such ideas and applications rely on

the classical notion of causality that, since Bell’s theorem
[8], we know cannot be applied to quantum phenomena.
The violation of a Bell inequality shows that quantum

correlations are incompatible with the joint assumption of
the causal constraints of local realism and measurement
independence (“free will”) [9–18]. As it turns out, the
phenomenon of quantum nonlocality can be seen as a
particular case of a causal inference problem [19], a
realization that has sparked a number of generalizations
of nonlocality to causal networks of growing size and
complexity [20–24]. Apart from the violation of Bell
inequalities, are there any other consequences of quantum
correlations to the theory of causality?
The standard manner for distinguishing between a

common cause and direct causal influences among two

variables is via an intervention [3]. However, in some cases,
it might not be possible to intervene in the system, e.g., due
to ethical reasons, or because one is interested in estimating
causal effects in past experiments. As shown in
Refs. [25,26], differently from the classical case, observed
quantum correlations alone are sometimes enough to
resolve the question. This has led to a formalization of a
quantum common cause [27] and, more generally, quantum
causal models [28–34]. However, the solution in
Refs. [25,26] relies on causal tomography, that is, it
depends on the precise knowledge of the physical system
and the measurement apparatuses. Strikingly, as shown in
the pioneering work [35] causal influences can also be
estimated without interventions and, in a device-indepen-
dent manner, via the introduction of an instrumental
variable. This result, however, relies on the assumption
that the unobserved hidden causes are classical and satisfy
the property of local realism. In view of that, the instru-
mental scenario has started to be analyzed from a quantum
perspective [36–38]; however, despite these initial
attempts, it is not known how quantum effects can change
the cause and effect relations that can be inferred from the
instrumental data. That is precisely the question we resolve
in this Letter.
We consider the problem of determining casual

influences in quantum causal models. To this aim, we
use the common measure known as the average causal
effect (ACE) [1], defined in terms of interventions, which
can either be measured directly or can be estimated from
observational data with the help of an instrumental variable.
As we show here, by considering the simplest instrumental
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scenario, every pure entangled state, as well as every pair of
incompatible projective measurements, can generate cor-
relations that violate the classical bounds on ACE, derived
in Ref. [35]. Remarkably, in this simplest scenario, quan-
tum correlations cannot violate any Bell-type inequality
[28]. That is, our results imply that quantum correlations
can generate nonclassical signatures going beyond the
paradigmatic violation of Bell inequalities. Motivated by
that, we also introduce a general framework for causal
inference in the instrumental scenario, providing bounds
for ACE and applicable to quantum theory and beyond.
We denote random variables by capital letters and

their values by the corresponding lower-case letters.
Additionally, we use the notation pðaÞ≡ pðA ¼ aÞ.
Quantifying causality and the instrumental scenario.—

Given two variables A and B, our aim is to quantify how
much of their correlations are due to direct causal
influences from A to B, or due to some common cause
described (classically) by a random variable, Λ. If we do
not have empirical access to the common cause, one option
is to intervene on the variable A, that is, fix its value to a
value of our choice independent of Λ. The intervention
erases any correlation between A and B mediated by Λ.
Thus, any remaining correlation after such intervention can
unambiguously be associated to the direct causal influence
A → B. Interventions are a natural choice for quantifying
causality. In fact, one of the most widely used measures of
causal influence is the ACE measure, defined in terms of
interventions as

ACEA→B ¼ max
a;a0;b

�
pðbjdoðaÞÞ − pðbjdoða0ÞÞ

�
; ð1Þ

where we used a notation, pðbjdoðaÞÞ to denote the
probability of Bob’s outcome b when variable A is set
by force to be a. We refer to it as “do probability” in the
text. The ACE measures the maximum change in the
distribution of the variable Bwhen the value of A is altered.
For a variety of reasons, however, it is not always

possible to perform an intervention. With the aim of still
being able to estimate causal influences based only on the
observational data, the instrumental scenario has been
developed [39,40]. The idea is to introduce a third variable
in full control of the experimenter, the so-called instru-
mental variable X. The variable X is assumed to be
independent from the common source variable Λ, that is,
pðx; λÞ ¼ pðxÞpðλÞ. This is reminiscent of the measure-
ment independence (free will) assumption in Bell’s theorem
[See Supplemental Material (SM) [41] for further details].
Furthermore, X is supposed to have a direct causal effect
only over A and not B, that is, pðbja; x; λÞ ¼ pðbja; λÞ.
Such causal assumptions can be graphically represented via
the directed acyclic graph shown in Fig. 1 (left). It implies
that the observed probability distribution is given by

pða; bjxÞ ¼
X
λ

pðajx; λÞpðbja; λÞpðλÞ: ð2Þ

Do probabilities pðbjdoðaÞÞ are given by

pðbjdoðaÞÞ ¼
X
λ

pðbja; λÞpðλÞ; ð3Þ

where the conditional distribution pðbja; λÞ as well as the
distribution of pðλÞ are the same as in Eq. (2).
To understand the role of the instrumental variable,

consider a simple linear relation between the variables
given by b ¼ κaþ λ. If we multiply both sides by x and
compute the covariance given by CðX;BÞ ¼ hX;Bi−
hXihBi, by using CðX;ΛÞ ¼ 0, we see that κ ¼ CðX;BÞ=
CðA;BÞ. That is, simply combining the correlations of B
with both A and X, we can estimate the causal influence κ
without the need of any intervention. In this example,
however, we assumed a prior knowledge of the functional
dependencies among the variables. Nicely, causal
influences can be estimated even without such assump-
tions, just as in the device-independent framework for
quantum information [47], where we perform tasks without
the precise knowledge of the underlying physical
mechanisms.
In the particular case where all variables are binary

a; b; x ∈ f0; 1g, the classical ACE (CACE) can be tightly
lower bounded by several expressions including only the
observed probabilities pða; bjxÞ [35]. Here, we give one of
the bounds that we often use in this Letter

CACEA→B ≥ 2pð0; 0j0Þ þ pð1; 1j0Þ þ pð0; 1j1Þ
þ pð1; 1j1Þ − 2: ð4Þ

For more lower bounds on CACEA→B see Refs. [1,35] or
SM [41].
We give another example that signifies the importance of

lower bounds such as in Eq. (4). Consider that A stands for
smoking or nonsmoking and B for cancer or no cancer.
Clearly, intervening and forcing people to smoke is not
possible. Strikingly, simply introducing an instrumental

FIG. 1. Directed acyclic graphs depicting causal structures:
(left) Instrumental scenario and (right) Bell scenario. In the
quantum model, we consider, here, the classical common source,
described by a random variable Λ, is replaced by a quantum
(potentially entangled) state ρAB.
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variable X standing, for example, for taxation or non-
taxation of tobacco—that arguably will affect whether
people smoke or not, but will not have a direct causal
effect on the development of cancer—and using Eq. (4), we
can estimate the effect of interventions and, thus, lower
bound such causal influences.
Within the classical theory of causality, for the bound in

Eq. (4) to be valid, one needs to assure that the instrumental
causal assumptions are fulfilled. In other words, that the
underlying causal structure is that described by Eq. (2). For
that aim, the so-called instrumental inequalities have been
devised [1,48,49].
In the instrumental scenario with binary variables, which

we consider here, the only class of instrumental inequalities
is given by

P
a maxx pða; bjxÞ ≤ 1 [48,49]. Curiously,

these inequalities remain valid, if the common source is
replaced by a quantum state or even postquantum box [28],
in contrast to the simplest Bell scenario [50].
At first, this might seem to imply that the classical bound

on ACE in Eq. (4) continues to hold even in the presence of
quantum or postquantum sources. As we show next, this is
not the case.
Quantifying causality with a quantum common source.—

If the common source is a bipartite quantum state ρAB, the
most general way to generate the classical binary variables
A and B, is to perform local measurements, described by
operatorsMx

a and Na
b, on each subsystem. Here, the value x

is used to choose Alice’s measurement setting, and the
outcome a of Alice’s measurement is used to determine
Bob’s measurement setting, accordingly. Quantum corre-
lations in the instrumental scenario are then described by

pða; bjxÞ ¼ tr½ðMx
a ⊗ Na

bÞρAB�: ð5Þ

In full analogy with the classical case, one can then define
quantum interventions as

pðbjdoðaÞÞ ¼ tr½ð1 ⊗ Na
bÞρAB� ¼ tr½Na

bρB�; ð6Þ

where ρB is the reduced state of Bob’s system. This implies
that, if an actual intervention is made, the observed
quantum average causal effect (QACE) is given by

QACEA→B ¼ max
a;a0;b

ftr½ðNa
b − Na0

b ÞρB�g: ð7Þ

As expected, if the shared state ρAB is separable, the
classical and quantum definitions of ACE coincide (see
SM [41]). That is, correlations mediated by a separable
state comply with the classical bound in Eq. (4). As stated
in our first result, the proof of which can be found in SM
[41], the same does not hold true for entangled states.
Result 1: Every pure entangled state can generate

correlations that violate the classical bound on ACE.
Moreover, entanglement is necessary but not sufficient
for such violations.

This result implies that—even though, in the simplest
instrumental scenario, quantum correlations admit classical
explanation of the form in Eq. (2)—the amount of
observable causal influence QACEA→B is strictly smaller
than that required, if the correlations were classical. In other
words, even if no instrumental inequality is violated, the
nonclassicality of the correlations can be witnessed by
interventions on the classical variable A.
In order to quantify the degree of violation v, we

consider how much the classical bound in Eq. (4) over-
estimates the causal influence in the presence of an
entangled source. In Fig. 2, we show violation vα for an
entangled two-qubit state ρAB ¼ jψihψ j, jψi ¼
cosðαÞj0; 0i þ sinðαÞj1; 1i for α ∈ ½0; ðπ=4Þ�. As detailed
in the SM [41], a maximally entangled two-qubit state
violates the classical bound by, at most, the amount
3ð ffiffiffi

6
p

− 2Þ=8 ≈ 0.169. However, this is not the optimal
violation: nonmaximally entangled states give rise to a
higher violation up to 3 − 2

ffiffiffi
2

p
≈ 0.172, a fact that, in the

context of Bell inequalities, has been called nonlocality
anomaly [51]. Moreover, one can easily see that entangle-
ment is not sufficient for the violation. For example, a
maximally entangled state mixed with white noise in the
amount of p stays entangled for p < 2=3, however, it leads
to a violation only if p < 1 −

ffiffiffiffiffiffiffiffi
2=3

p
≈ 0.1835.

Violation of Bell inequalities [50] is not only a proof that
the shared state is entangled, but also a witness of the fact
that the measurements being performed should display
some nonclassicality, as they should be incompatible
[52–54]. As proven in the SM [41] and stated below, a
similar result holds for the violation of the classical bounds
on causal influence.
Result 2: Every pair of incompatible rank-1 projective

qubit measurements can generate correlations that violate
the classical bound on ACE. Moreover, incompatibility of
both Alice’s and Bob’s observables is necessary but not
sufficient for the violation.

FIG. 2. (left) Violation vα of the classical bound by an
entangled two-qubit pure state with parameter α; and violation
vϕ as a function of the angle ϕ between projective measurements
of Bob. The dashed lines show that optimal states and measure-
ments are different from the maximal entangled state (α ¼ ðπ=4Þ)
and measurements in mutually unbiased bases (ϕ ¼ ðπ=4Þ).
(right) Regions with nonzero lower bounds on CACE (Ref. [35]),
QACE [Eq. (11)], and NACE [Eq. (12)].
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In Fig. 2, we show violation of the bound in Eq. (4) as a
function of the angle ϕ between the measurements of
Bob that we consider to be Na

0 ¼ 1
2
½1þ cosðϕÞσzþ

ð−1Þa sinðϕÞσx�. In Fig. 2, the angle ϕ ranges between 0
and π=2 with 0 (π=2) corresponding to perfectly aligned
(antialigned) σz (σx) measurements. The value ϕ ¼ ðπ=4Þ
corresponds to the case of measurements in mutually
unbiased bases which are optimal for the violation of the
simplest Bell inequality [50]. In our case, the optimal
measurements of Bob correspond to ϕ ¼ arctanð 2ffiffiffiffiffiffiffiffiffiffiffi

3
ffiffi
2

p þ2
p Þ≃

0.2149π.
So far, we have relied on interventions on the variable A

and explicitly taken into account the quantum states and
measurements. However, in the more general case, we are
given some observational data pða; bjxÞ, but do not know
a priori which states and measurements have been
employed. In this case, our aim is to be able to estimate
QACE from the observational data pða; bjxÞ, without
actually needing to perform an intervention. That is, in
order to find a device-independent bound on QACE, we
have to optimize over all possible measurements and states
generating the observed correlations pða; bjxÞ. Our
approach to this problem is to map the instrumental
scenario to the more familiar and well-studied bipartite
Bell scenario [37].
Let us consider a Bell scenario shown in Fig. 1 (right)

that contains the same observed random variables A, B, and
X as the instrumental scenario in Fig. 1 (left) and an
additional classical variable Y that takes values from the
same set as A, and has a causal effect only on B. We also
take the hidden common cause, classical or quantum, to be
the same for both scenarios. Let pBellða; bjx; yÞ be the
observed behavior in the considered Bell scenario. Local
hidden-variable theories reproduce correlations of the
following type:

pBellða; bjx; yÞ ¼
X
λ

pðajx; λÞpðbjy; λÞpðλÞ: ð8Þ

Conversely, quantum behavior corresponding to measure-
ment operators Mx

a and Ny
b and quantum state ρAB

is pBellða; bjx; yÞ ¼ tr½ðMx
a ⊗ Ny

bÞρAB�. The following
mapping:

pða; bjxÞ ¼ pBellða; bjx; aÞ; ∀ a; b; x ð9Þ
connects classical, quantum, and postquantum correlations
in Bell and the instrumental scenarios in a unified manner.
Indeed, one can directly see that the mapping in Eq. (9)
transforms classical correlations in Eq. (8) to the ones in
Eq. (2), and the same mapping connects their quantum
counterparts. More importantly, we can compute the
unobserved do probabilities pðbjdoðaÞÞ in terms of
pBellða; bjx; yÞ in the following way:

pðbjdoðaÞÞ ¼
X
a0
pBellða0; bjx; aÞ; ∀ a; b; x; ð10Þ

where the choice of x does not play any role as long as the
correlations pBellða; bjx; yÞ obey the nonsignaling con-
straints [55]. One can then see that expressing do proba-
bilities with the map in Eq. (10) is equivalent to the
previous definitions for do probabilities in classical and
quantum cases. We remark that the mapping in Eqs. (9),
(10) is not the same as the postprocessing on the events of
Y ¼ A, but is rather a projection from the space of
pBellða; bjx; yÞ to the space of pða; bjxÞ and pðbjdoðaÞÞ.
The mapping in Eqs. (9), (10) allows the use of known
techniques for bounding the set of quantum correlations in
a Bell scenario, in particular, the so-called Navascués-
Pironio-Acín hierarchy [56], with a slight variation: Here,
the probabilities pBellða; bjx; a0Þ, (a ≠ a0), with no analogy
in the instrumental scenario, play the role of the “unob-
served” variables of the semidefinite program [57].
Additionally, for binary A one should take into account
the relation pBellða; bjx; a0Þ ¼ pðbjdoða0ÞÞ − pða0; bjxÞ,
that follows from

P
a pBellða; bjx; a0Þ ¼ pBellðbja0Þ.

In the following, we focus on the binary case
(a; b; x ∈ f0; 1g) and derive a number of analytical results.
Result 3: In the instrumental scenario with dichotomic

measurements QACE is lower bounded as

QACEA→B ≥
X
x¼0;1

½pð0; 0jxÞ þ pð1; 1jxÞ� − ζ − 1;

ζ ¼ max
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY
a¼0;1

f1�
X
x¼0;1

ð−1Þx½pða; 0jxÞ − pða; 1jxÞ�g
s

:

ð11Þ
The derivation of the above bound is presented in the SM

[41]. In Fig. 2 (right), we compare the lower bounds in
Eq. (11) and the one in Eq. (4) (along with the other bounds
in Ref. [35]) by plotting the regions in which these bounds
are nonzero, showing a clear gap between the classical and
quantum descriptions. In Fig. 2 (right), a particular slice of
the probability space is considered, corresponding to
pð1; 0jxÞ ¼ 0, pð0; 1jxÞ ¼ 1

2
− pð0; 0jxÞ, pð1; 1jxÞ ¼ 1

2
,

x ¼ 0, 1.
Quantifying causality in postquantum theories.—One

might be interested about whether nontrivial lower bounds
similar to Eqs. (4), (11) exist in generalized probabilistic
theories. Here, we answer this question for correlations
constrained only by the nonsignaling condition in a Bell
scenario [55].
In order to do so, we map [using Eqs. (9), (10)] the

nonsignaling constraints to the instrumental scenario and
use linear programming techniques (see SM [41]) to find
tight lower bounds on nonsignaling ACE (NACE)

NACEA→B ≥ max
x

½pð0; 0jxÞ� þmax
x

½pð1; 1jxÞ� − 1: ð12Þ

In Fig. 2 (right), we also plot the region where
NACEA→B ≥ 0, which is given by two lines with
pð0; 0j0Þ ¼ 1

2
and pð0; 0j1Þ ¼ 1

2
.
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Discussion.—The incompatibility of quantum correla-
tions with classical causal models is a cornerstone in the
foundations of quantum theory. The paradigmatic manner
of witnessing this nonclassicality is via the violation of Bell
inequalities. There are causal scenarios, however, where
violations of Bell-type inequalities are not possible [28]. At
first, this might seem to imply that quantum common
causes do have a classical explanation in such scenarios. As
we show here, this intuition is false. Even in the absence of
Bell violations, quantum correlations can violate the
classical bounds for the causal influence between two
variables in the presence of a quantum common cause.
More precisely, every pure entangled state and a pair of
incompatible projective measurements can violate such
bounds. Motivated by this result we propose a general
framework to put bounds on the average causal effect in the
presence of quantum common causes and even nonsignal-
ing boxes. We obtain several analytical results and compare
the regions where the aforementioned bounds are
nontrivial.
Here, we have focused on the scenario where all the

observed variables are classical, but the common cause can
be quantum. Generalizations where other variables in the
instrumental causal structure are made quantum open an
interesting venue for future research. For instance, the
teleportation protocol [58] is an instrumental scenario
where the instrumental variable X is the state to be
teleported and the outcome B is the teleported quantum
state. Other paradigmatic quantum information scenarios,
such as the remote state preparation [59] and dense coding
[60], also have an underlying instrumental causal structure.
On the more foundational side, many physical principles
have been developed for understanding why quantum
correlations do not violate Bell inequalities up to the
maximum allowed by special relativity [55]. In this
Letter, we showed that quantum theory also imposes strict
bounds on the causal influence between events that differ
for generalized probabilistic theories. Can it be that there is
an underlying causal principle explaining quantum corre-
lations? Finally, we notice that, just as Bell’s theorem [8],
our conclusions also rely on the assumption of measure-
ment independence. Recently, the relaxation of such an
assumption in Bell scenarios has been given growing
attention both theoretically [9–15] and experimentally
[16–18]. How robust is the quantum violation of the
classical causal bound under such relaxation? We hope
that our results will trigger further developments in all these
new directions.
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