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We study the dynamics of torque driven spherical spinners settled on a surface, and demonstrate that
hydrodynamic interactions at finite Reynolds numbers can lead to a concentration dependent and
nonuniform crystallization. At semidilute concentrations, we observe a rapid formation of a uniform
hexagonal structure in the spinner monolayer. We attribute this to repulsive hydrodynamic interactions
created by the secondary flow of the spinning particles. Increasing the surface coverage leads to a state with
two coexisting spinner densities. The uniform hexagonal structure deviates into a high density crystalline
structure surrounded by a continuous lower density hexatically ordered state. We show that this phase
separation occurs due to a nonmonotonic hydrodynamic repulsion, arising from a concentration dependent
spinning frequency.
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Introduction.—Recently, active systems considering
rotational degrees of freedom have emerged as an important
part of out-of-equilibrium materials [1–14]. In the case of
field-actuated colloidal particles [3–8], the rotational and
translational motion are coupled. The flow created by the
rotating objects in the presence of a boundary can lead to a
translational motion. The rolling objects have been
observed to form rotating clusters [4] and the hydro-
dynamic coupling between the rollers has been attributed
to a formation of flocking states [8] as well as to a fingering
instability [3], while purely rotational dynamics has been
linked to the formation of hexagonal crystals by fast
spinning bacteria [10] as well as to the emergence of edge
currents [11] and odd viscosity [12] in dry spinner
materials.
Another example where the individual dynamics is

purely rotational is provided by torque driven particles
suspended in a fluid. Previous work has predicted a phase
separation of a binary mixture of counterrotating spheres in
a monolayer at the Stokes’ limit [15]. In the absence of
inertia, an individual spinning sphere creates a rotational
flow field with only an azimuthal component [16,17]. At
higher volume fractions this enables the particles to explore
different states and leads to chaotic particle trajectories
[18]. At hexagonally symmetrical arrangement of the
particles the mutual (azimuthal) flow fields cancel, render-
ing the structure marginally stable [19,20] and recently it
has been shown that combining the mixing arising from the
rotational flow with a steric repulsion can lead to a fast
crystallization at zero Reynolds number (Re) limit [21].
When the rotational Re is increased, inertial effects

become important. Corotating disks on a gas-liquid inter-
face have been observed to form hexagonal arrangements
due to an interplay between repulsive far-field Magnus
forces and a magnetic attraction [22,23], while simulations

have predicted both attractive and repulsive hydrodynamic
interactions between cospinning disks at finite Reynolds
numbers in strictly two dimensions [24].
In three dimensions and at Re ∼ 1 a single spinning

spherical particle creates an additional flow, which includes
both radial and polar components [16,25,26] which are
missing in the 2D case. This secondary flow has been
attributed to the repulsion between a spinner pair [16,27,28]
and to the attraction of a single spinner towards a no-slip
wall along the spinning axis [29]. At higher volume
fractions, the secondary flow is expected to lead
more intricate particle dynamics and, for example, the
stabilization of spinner vortices in 3D space has been
predicted [30].
Here we study the inertial hydrodynamics of spinners at

high concentrations. The system consists of spherical
spinning particles near a no-slip surface and includes both
the effects of inertia and the 3D flow fields. The particles
are subjected to a constant torque in the wall normal and to
a weak gravity towards the surface [Fig. 1(a)]. At the steady
state the spinners form a monolayer. Starting from random
initial positions above the surface, we observe a rapid
formation of hexatic order at semidilute area coverages
[Fig. 1(c)]. In the absence of thermal effects, the crystal-
lization arises from an interplay between the hydrodynamic
mixing from the azimuthal flow fields and the repulsion
from the secondary flow. When the overall area fraction is
increased, we find a spontaneous condensation of high
spinner density area surrounded by a lower density hexa-
gonal structure of the spinners [Fig. 1(d)]. We show that
this phase separation is due to particle concentration
dependent hydrodynamic repulsion—the spinning fre-
quency decreases with increasing concentration, leading
to a reduction of the hydrodynamic repulsion at high
particle densities.
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Methods and simulation setup.—We employ a lattice
Boltzmann method (LBM) to solve the dynamics of the
system. The fluid-particle interaction is achieved by bounce
back on the links method [31–33], which gives rise to a no-
slip boundary condition on the particle surface. Avery short
range repulsion between the solid boundaries is applied in
order to avoid particle-particle and particle-wall over-
laps [34,35].
We study the system at finite rotational Reynolds

numbers (Re > 1), which measure the ratio between
inertial and viscous forces Re ¼ ρωR2=μ, where ω and
R are the rotational frequency and radius of a particle, and ρ
and μ are the density and viscosity of the fluid [36].
The particles are driven by a constant torque T, which leads
to the spinning motion of the particles. In the Stokes’ limit,
the frequency of an isolated particle is given by
ω0 ¼ T=8πμR3. Using this, we calculate the rotational
Reynolds number Re ¼ ρω0R2=μ ¼ ρT=8πμ2R, which is
used in the text. The effective Re will be a little lower due to
inertial effects [25,26,29] and the hydrodynamic resistance
from the wall. We vary the particle area fraction
ϕ0 ¼ NðπR2=LYLZÞ × 100%, where LYjZ are the simula-
tion box lengths (LX ¼ 20R and LY ¼ LZ ¼ 160R unless
otherwise mentioned) [36]. The hydrodynamic interactions
create an attraction towards a no-slip surface along the
spinning axis [29]. To model an experimental setup and to
ensure a smooth monolayer we add an additional (weak)
gravitational force towards the confining wall [36].
Hexatic order and phase separation.—A spherical par-

ticle spinning near a surface at Re > 0 creates an outward

spiralling flow field [Fig. 1(b)] [29]. At higher particle area
fractions this gives a rise to mixing via the rotating flow
field, similarly to Re ¼ 0 case [18,21] and it includes
outward radial component, which leads to effective repu-
lsions between the spinners.
When starting from random particle positions above the

wall [Fig. 1(a)], we observe a rapid formation of stable
hexatic order at semidilute area fractions [Fig. 1(c)], which
is in contrast with the Re ¼ 0 case where the ordering
requires a thermodynamic repulsion [21]. To characterise
the ordered state, we calculate a local hexatic order
parameter Ψ6 [36]. A relative high value of Ψ6 ≈ 0.75
[Figs. 2(b) and 3(a)] is observed when the overall area
fraction ϕ0 < 35% and the local density distribution PðϕÞ,
calculated from sub-domains LYs ¼ 12R and LZs ¼ 12R,
shows a single peak [Fig. 2(a)].
Increasing ϕ0, the PðϕÞ becomes bimodal [Fig. 2(a)].

The uniform structure deviates into a high density crystal
surrounded by a lower density hexatically ordered state
[Fig. 1(d)]. PðϕÞ shows two peaks at ϕ1 ≈ 25% and
ϕ2 ≈ 58%, corresponding to a low and a high particle
density region, respectively [Fig. 2(a)]. The values of ϕ1

and ϕ2 are independent of the overall area fraction ϕ0, but
the size of the dense region grows with the increasing ϕ0

while the size of the dilute region is reduced [as shown by
the amplitudes of the two peaks in Fig. 2(a)]. Both the
dense and dilute regions show a non-vanishing hexatic
order, with a slightly lower Ψ6 ≈ 0.7 than in the single
phase state [Figs. 2(b) and 3(a)].
To study the dynamics of the phase separation, we

measure a time development of the domain length-scale
LðtÞ [36]. In the uniform state, the domain size is constant
and the hexatic order grows rapidly [Figs. 3(a) and 3(b)]. At
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FIG. 2. (a) The probability distributions of the local area
fractions PðϕÞ are shown for different global area fractions ϕ0

marked by the vertical dashed line for a Re ≈ 10 sample. In the
case of a single phase (ϕ < 35%) the peak corresponds to ϕ0. The
PðϕÞ becomes bimodal for ϕ0 > 35%. (b) The averaged local
hexatic order as a function of overall area fraction. (c) Density
profile ϕðrÞ as a function of the radial distance r from the center
of the dense region.
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FIG. 1. (a) A schematic showing the simulation system. A
constant torque T is subjected to each particle sedimented on a
flat wall. (b) The streamlines showing the flow field created by a
rotating spherical particle with Re ≈ 10. (c) A hexagonal structure
of the particles for an area fraction ϕ0 ≈ 32%. (d) Phase sepa-
ration to particle dense and dilute regions for ϕ0 ≈ 37%. The
color maps show the local area fractions. The insets in (c) and
(d) show the structure factors with the characteristics of a hexatic
order in both cases.
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higher area fractions, the local density becomes non-uni-
form and the L starts to grow [Fig. 3(b), see also movie 1
[36]]. After the onset, the growth of the LðtÞ is rapid,
eventually reaching a stable domain size, and the radial
density profile ϕðrÞ shows a plateau in the denser phase
[Fig. 2(c)]. The particle spinning frequencies ω are strongly
correlated with the local density. At high densities ω is
decreased [Fig. 3(d)], due to increased hydrodynamic
resistance similar to what is observed with passive colloidal
particles [37]. Replacing the constant torque T by a
constant spinning frequency, the two-density structure
dissolves and a uniform hexatic state is reformed
[Figs. 3(b) and 3(e)]. These observations suggest that the
density dependent spinning frequency can locally alter the
hydrodynamic repulsion between the particles.
Typical inertial (lift) forces on a spinning particle, such

as Magnus effect, require non-zero translational motion
[38]. In our simulations, the particles have vanishing
velocity v ≪ ωR due to the constraint of the hexagonal
crystal. We propose that the repulsion between the spinners
mainly arises from the secondary flow created by the
spinning spheres [16,25,26], and that the Magnus effect
plays little or no role. For a single particle, the secondary
flow has a radial component vr ∼ ω2, which advects the
fluid away from the particle at the equatorial plane
[16,25,26]. Based on this, we expect that altering ω could
lead to changes in the particle-particle interactions.
Nonmonotonic repulsion and hydrodynamic instability.—

We estimate the repulsion between a pair of spinners arising
from the secondary flow by applying a spring force

F ¼ −ksðr − r0Þ between the particles and varying ω
[36]. The particles are restricted to a straight line along
Y to ensure that there is no translational motion. We
observe a repulsive interaction F ∼ ω2 between the two
spinners [Fig. 4(a)], which agrees with what is expected
from the single particle flow field [16,25,26].
For a single spinner the secondary flow shows a decay of

the radial component as vr ∼ ½1 − ðR=rÞ�2r−2 [16,25,26].
The interactions between the spinners is expected to be
more complicated, due to the presence of the particle-wall
and particle-particle near-field interactions. For a particle
pair, a decay F ∼ r−2.7 is observed and the normalized
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(e) The snapshots show particle positions and are color coded by
the spinning frequencies ω of the particles.
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FIG. 4. (a),(b) The hydrodynamic repulsion between a pair of
spinners confined to move only along one direction (Y). (a) The
repulsion force shows a F ∼ ω2 scaling and (b) a F ∼ r−2.7

decay. (c) The spinning frequency ω as a function of overall
area fraction for a constant torque for a small sample
(open circles) (LX ¼ LY ¼ LZ ¼ 20R and Re ≈ 10). The black
curve is a fit to polynomial function ω=ω0 ¼ 0.308ϕ3−
1.291ϕ2 þ 0.122ϕþ 0.821. The green shadow shows the corre-
lation between the frequency and the local area fraction cal-
culated from the two-phase state of Fig. 1(d). (d) A schematic
showing the repulsion force as a function of the overall
area fraction when combing the measurements from (a)–(c).
(e) A snapshot showing the measurement of the expansion force
of a small spinner cluster (N ¼ 80). (f) The measured effective
repulsion force of a spinner cluster as a function of the area
fraction.
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repulsion forces collapse on a single curve for all the
spinning frequencies considered [Fig. 4(b)].
Using a relation r ∼ ϕ−0.5 between the area fraction ϕ

and particle separation r in a uniform two-dimensional
structure and the data in Fig. 4(b), we can estimate a
monotonic scaling of the repulsion force F ∼ ϕ1.35 for a
constant spinning frequency. This is not expected to lead to
phase separation, in agreement with the constant ω case
[Fig. 3(e)]. When a constant torque is applied, the spinning
frequencies are sensitive to the local surroundings and
decrease when the local density is increased [Fig. 4(c), see
also Fig. 3(d)].
To qualitatively evaluate the existence of a critical area

fraction ϕ�, we combine the pair data from Figs. 4(a) and
4(b) with the ωðϕÞ data from Fig. 4(c). Now we can
estimate F ∼ ω2ðϕÞϕ1.35 which gives a nonmonotonic ϕ
dependence [Fig. 4(d)]. At the dilute regime the repulsion
increases with increasing ϕ reaching a maximum at ϕ� ∼
46% and then starts to decrease [Fig. 4(d)]. This can
qualitatively explain our observation of the two density
crystallization. When the global area fraction ϕ0 > ϕ�, the
uniform density is unstable, and any perturbation from the
azimuthal mixing will lead to the separation of dense and
dilute regions. We note that our analysis in Fig. 4 is based
on pair interactions, and assumes a perfect symmetry. It is
overestimating the ϕ� compared to the bulk simulations
where ϕ� ∼ 35% is observed (Fig. 2).
In the simulations, Ψ6 is observed to grow rapidly to

∼0.75, while the growth of the domain length scale L
occurs at a later stage [Figs. 3(a) and 3(b)]. When Ψ6 < 1
the rotational (tangential) flow fields lead to translational
motion of the spinners, giving a rise to nonuniformities in
the particle density (see, e.g., Supplemental Material,
movies 1 and 2 [36]). These suggest that local density
fluctuations may reduce the ϕ� predicted from the pair
interactions in Fig. 4(d). Close to the critical concentration,
the density fluctuations would eventually lead to the
formation of a large high density cluster, stabilized by a
boundary layer between the high and low density regions,
where both the Ψ6 and ϕ change continuously [36]
[Fig. 1(d)].
To better evaluate the effective repulsion, we measure an

expansion force of a small uniform cluster [36] [Figs. 4(e)
and 4(f)]. The expansion force shows an increase until
ϕ ∼ 37%, it is then observed to slightly decrease, followed
by a steep increase at ∼55% due to particle collisions and
repulsive lubrication forces [Fig. 4(f)]. This favors the
formation of the high density phase at ∼55%, in agreement
with ∼58% observed in Fig. 2. To balance the repulsion
from the dense phase, we can estimate a low density phase
at ∼28% [Fig. 4(f)], which is close to ∼25% observed
in Fig. 2.
The effect of Reynolds number.—The inertial effects

control the competition between the rotational mixing and
the radial repulsion. For a single particle, the ratio between

the azimuthal vψ and radial vr flow fields gives vψ=vr ∼
Re−1 [16,25,26]. At small Re mixing dominates, and no
spontaneous crystallization is expected at the Stokes’ limit
in the absence of repulsive interactions [21].
Starting from the steady state of a two-phase crystal-

lization (Re ≈ 10), we observe that the density peaks
become less pronounced when Re decreases and disappears
when Re ≈ 1 (Fig. 5). Similarly, the hexatic order is lost
when the relative hydrodynamic repulsion is reduced
[Re < 5 in Fig. 5(b)], in agreement with the predictions
at Re ¼ 0 [21]. When the Re is increased, the density peaks
become more pronounced [Fig. 5(a)] and the system shows
increased hexatic order [Fig. 5(b)]. Interestingly, the
hexatic order shows a hysteresis around Re ∼ 2. This is
likely due to Ψ6 dependence of the rotational mixing: the
higher Ψ6 the smaller the perturbations arising from the
rotational flows.
Conclusions.—We have simulated spherical particles

spinning at an inertial regime. The results show that the
particles form hexagonal structures when they settle on the
solid surfaces with a semidilute particle concentrations.
Increasing the particle concentration, leads to a phase
separated state, where the uniform hexagonal structure
deviates into a dense domain surrounded by a less dense
region while maintaining overall hexatic order. We dem-
onstrate that this effect is due to the nonmonotonic
repulsion arising from the particle concentration dependent
spinning frequency at inertial regime, suggesting a rota-
tional analog of the motility-induced phase separation
(MIPS) [39] for spinners.
We believe that our system can be useful for the design

of new artificial spinner materials. A possible experimental
realization could be a spinner system consisting of milli-
meter sized particles embedded with a weak magnet in a
rotating magnetic field [40]. By using weak magnets, and
high magnetic field, the dipole-dipole interactions could be
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reduced enough to allow hydrodynamic interactions to
dominate. Typically, this leads to spinning with a constant
frequency, while a constant torque would require a slip
between the embedded magnet and the spherical shell. Our
observation of the phase separation provides a route for a
plastic crystal state with a spatially variable density. Further
it highlights the importance of inertial secondary flow in the
spontaneous assembly of ordered structures in non-
equilibrium spinner systems.
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