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We report localization of fractional quantum Hall (QH) quasiparticles on graphene antidots. By studying
coherent tunneling through the localized QH edge modes on the antidot, we measured the QH quasiparticle
charges to be approximately �e=3 at fractional fillings of ν ¼ �1=3. The Dirac spectrum in graphene
allows large energy scales and robust quasiparticle localization against thermal excitation. The capability of
localizing fractional quasiparticles on QH antidots brings promising opportunities for realizing anyon
braiding and novel quantum electronics.
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The fractional QH effect (FQHE) hosts quasiparticles
with nontrivial anyonic exchange statistics [1,2], inviting
the possibility of novel quantum information devices based
on the braiding of individual quasiparticles. Anyon braid-
ing has been previously explored in QH interferometers
[3–6] by engineering the pathways of the one-dimensional
(1D) QH edge modes. The zero-dimensional (0D) QH
antidot is another approach which, compared to QH
interferometers, allows the possibility of control over
individual quasiparticles. In a QH antidot, QH edge modes
encircling a small void inside the two-dimensional electron
system (2DES) form quantized, discreet energy levels due
to quantum confinement. Individual quasiparticles of the
QH fluid can then be added to, extracted from, or trans-
ferred between QH antidots through tunneling [7,8].
The presence of discrete quantization energy levels min-
imizes the quasiparticle scattering phase space, optimizing
coherence. Such approach therefore potentially allows
manipulation of quasiparticles with nontrivial topological
properties and realization of novel quantum devices [9].
Prior works on fractionally charged quasiparticles

largely focus on semiconductor-based 2DES in the FQH
regime. The fractional charge of ν ¼ 1=3 quasiparticles has
been studied in current partition noise of FQHE edge states
[10,11], and in dc transport measurements of GaAs-based
QH antidots [7] and QH interferometers [3,5]. More
recently, charge transport at fractional fillings of ν ¼ 1=3
and ν ¼ 2=3 has been investigated in a GaAs-based 2DES
in the Aharonov-Bohm (AB) regime in a QH interferometer
[12]. Despite these developments, it is consistently found
that the relevant energy scales, including Landau level (LL)
spacing and the quantum confinement-induced energy level
spacing, are small in GaAs-based 2DES. This necessitates
challenging experimental conditions, including sub-
100 mK temperatures and ultra-low-noise electronics to
realize transport in individual devices, and effectively
precludes experiments with more complex multidevice
structures even with the highest quality samples.

The limiting energy scale in a QH antidot is the
quantization energy spacing: Δϵ ∼ ℏv=D. Here, the edge
mode velocity v is limited by the Fermi velocity and is
proportional to the sharpness of the confinement potential,
and D is the diameter of the antidot. Given the size of the
antidot is much larger than the magnetic length, a large
edge mode velocity facilitates large quantization energy
scales. Graphene as a 2D Dirac semimetal offers several
advantages over GaAs including large QH gaps in both
integer and fractional fillings [13,14], high precision in
lithographic definition, and a large intrinsic Fermi velocity.
The Dirac spectrum leads to different electric screening
properties and Landau level structure from those of a
conventional 2DEG, calling for investigations in QH
interferometer and antidot setups. In recent years, mono-
layer [15] and bilayer graphene [16,17] interferometers
have been used to study the dynamics of QH edge states,
and large edge mode velocity has been measured in
magnetoplasmons over long graphene edges [18]. More
recently, we have demonstrated a graphene QH antidot
which localizes ν ¼ 2 quasiparticles, both in the Coulomb
blockade and the Aharonov-Bohm regimes [19]. In this
Letter, we demonstrate localization of quasiparticles with
single-electron charge in the integer QH fillings of ν ¼ 1, 2,
and 6, as well as fractionally charged quasiparticles in
ν ¼ �1=3. To our knowledge, localization of the ν ¼ −1=3
state has not been previously reported. Because of the large
energy scales in graphene, quantized charge and magnetic
flux oscillations persist to temperatures up to 2 orders of
magnitude higher than observed in GaAs-based 2DES
previously studied.
Three high mobility (μ > 300 000 cm2 V−1 s−1) sus-

pended graphene antidot samples were fabricated for this
work [with examples shown in Fig. 1(a)] using a procedure
outlined in the Supplemental Material [20]. The diameters
of the antidots studied, d ¼ 100–300 nm, were chosen to
be significantly larger than the magnetic length,
lB ¼ ffiffiffiffiffiffiffiffiffiffiffi

ℏ=eB
p

, yet small enough to form sizable quantum
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confined energy levels. The total channel length of
graphene was chosen to be L ∼ 700 nm, resulting an
antidot-electrode distance of ∼200 nm. Prior to the
measurements, in situ Joule heating was performed on
all samples in order to minimize the contaminants on the
graphene channels. After measurements, the samples were
rechecked with a scanning electron microscope (SEM) to
ensure that there was no structural damage to the sample
from the Joule heating. We note that effective coupling
between the electrodes and the antidot can be achieved in
our devices despite the relatively large distance in between
the electrodes and the antidot edge, as long as the edge
modes are not too tightly confined to the physical edges.
The coupling may also be enhanced due to the presence of a
doping gradient near the electrodes, originating from the
contact-induced potential profile in graphene [25] or from
impurities which cannot be effectively removed by Joule
heating due to electrodes or substrate cooling. Sample 1
was fabricated to focus on the low field behavior of the
integer filling factors, where the magnetic length is large
and the QH plateaus are narrow. Samples 2 and 3 were
fabricated with the aim to focus on the ν ¼ 1=3 state, which
requires high magnetic field to be observed robustly (7 T in
our devices) and has a much smaller QH energy gap
compared to low integer filling factors at similar magnetic
fields. Experimental details regarding the measurements are
discussed in the Supplemental Material [20].
At integer fillings, the addition of one flux quantum,

ϕ0 ¼ h=e, into the antidot center corresponds to the
expulsion of one electron per filled Landau level from
the antidot edge. As we have shown previously for
graphene [19], and has been demonstrated in other 2D
systems, in the regime where Coulomb blockade physics is

dominant this corresponds to ν conductance peaks per ϕ0,
where ν is the filling factor of the graphene channel
[Fig. 1(c)]. Similarly, the global back gate can be used
to attract or expel charge from the antidot edge, and the
Coulomb interaction prevents the addition of more than
one electron to the antidot edge at one time. In this way,
the electron charge in the integer filling factors can be
estimated using the average magnetic field period and
back-gate voltage period of successive conductance peaks
(see, e.g., Ref. [7])

q ¼ ϕ0

cΔVG

ΔBν
; ð1Þ

where ΔVG is the back-gate voltage period, ΔBν is the ν
dependent magnetic field period, and c is the gate capacitance
per unit area which can be calculated from the positions of the
QH plateaus with respect to back-gate voltage. For Sample 1
[Fig. 1(c)], c ∼ 31.0 aF μm−2, and the back-gate voltage
period ΔVG ∼ 24.7 mV and magnetic field period ΔBν¼2 ∼
20 mT (precisely measured for ν ¼ 2, but consistent for all
other integer filling factors), give an estimate for the quasi-
particle charge, q ∼ 0.99� 0.07e, in good agreement with
the expected charge for a single electron. This demonstrates
the reliability of the QH antidot approach for measuring
quasiparticle charge. We next apply the same method in the
FQH regime for samples 2 and 3.
Edge modes encircling the antidot can be approximated

by lowest Landau level (LLL) wave functions in the
symmetric gauge, and the presence of the antidot confine-
ment potential lifts the degeneracy of successive states [19].
The ν ¼ 1=3 state forms an incompressible electron liquid
in the LLL with each electron state effectively occupied by

FIG. 1. (a) False color SEM image of a typical sample with three devices fabricated on the same graphene flake. The white scale bar is
2 μm. (b) Integer QH resistance versus filling factor in sample 1 at 320 mTand 700 mK. The fine, oscillatory features on the QH plateaus
are from tunneling through the antidot. (c) Magnetic flux and charge oscillations in sample 1, measured on (from left to right) ν ¼ 1, 2, 6
plateaus. The black scale bars on the back-gate dependence plots is 25 mV for all filling factors, corresponding to the addition of a single
electron; while the scale bars on the magnetic field dependence plots is 20 mT corresponding to the addition of ϕ0. The effective radius
calculated from the ν ¼ 1 magnetic field period is rs1 ∼ 250 nm, in reasonable agreement with the design size.
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the charge e=3, which also represents the charge of the
quasiparticle excitations above the interacting ground state
[26]. Therefore, in the ν ¼ 1=3 regime, application of the
back-gate voltage pushing single-electron states up or down
in energy, adds one quasiparticle charge q ¼ e=3 every
period which corresponds to the shift of the energy
spectrum by one electron state. Similarly, as a function
of magnetic flux, the addition of ϕ0 to the antidot center
shifts the electron spectrum by one state, leading to the
expulsion of one quasiparticle from the antidot edge
[27,28], the same as in a QH interferometer [29].
For sample 2, the ν ¼ −1=3 plateau started to form at

∼4 T and reached the quantized value of e2=3h at 9 T
[Fig. 2(a)]. On the plateau, conductance oscillations were
observed with an average period of 54 mV in back-gate
voltage that decayed rapidly when exiting the plateau. The
sample also showed periodic behavior on the ν ¼ −1=3
plateau with respect to magnetic field [Fig. 2(b)] with a
period of 240 mT. Using an area capacitance of c ∼
62.0 aF μm−2 obtained from the back-gate dependence
of the QH plateaus, it was found that q ¼ −0.36� :09e
for the ν ¼ −1=3 quasiparticle charge. We note that the
area capacitance in sample 2 is significantly larger

compared to sample 1, due to the incomplete removal of
silicon oxide underneath the graphene channel as well as
channel sagging, resulting in a smaller graphene-gate
distance. Separately calculating the antidot radius
from the magnetic field period, rΔB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϕ0=πΔB
p

, and
back-gate voltage period, rΔVG

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q=πcΔVG

p
, gives

rΔB ¼ rΔVG
≡ rs2 ∼ 75 nm, consistent with the physical

size of the antidot measured using SEM imaging. Indeed, in
high magnetic fields the effective size of the antidot is
expected to be close to its physical size, as the magnetic
length becomes much smaller than the antidot diameter.
Sample 3 showed the weak formation of a ν ¼ 1=3

plateau for magnetic fields above 7 T, but the two-terminal
conductance did not reach e2=3h at the fields measured
[Fig. 2(c)] due to limited sample quality. This plateau also
showed periodic conductance oscillations in both back-gate
voltage and magnetic field with periods of 34 mV and
95 mT respectively [Fig. 2(d)]. The area capacitance in this
sample (without excess oxide and with much less channel
sagging) was the same as sample 1, c ∼ 31.0 aF μm−2,
which gives q ¼ 0.29� :05e for the ν ¼ 1=3 quasi-
particle charge, approximately the same magnitude as
for ν ¼ −1=3. The fractional quasiparticle charge measure-
ments here have significantly larger uncertainties compared
to previous studies on GaAs-based 2DEGs [7], which may
be attributed to the limited sample quality and higher
measurement temperature in this work.
Next, we investigate the energy scales and the tempera-

ture dependence of the conductance oscillations, first
focusing on the structure of the ν ¼ 2 conductance peaks
in sample 1. The presence of Coulomb “diamonds” in the
charge stability diagram [Fig. 3(a)] indicates that the

FIG. 2. (a) Development of QH plateaus in sample 2 with
increasing magnetic fields: B ¼ 1, 4, 6, and 9 T. (b) Conductance
vs back-gate voltage and magnetic field for the ν ¼ −1=3 plateau
for sample 2 with an effective radius rs2 ∼ 75 nm. (c) Development
of QH plateaus in sample 3 with increasing magnetic fields:B ¼ 3,
7, and 9 T. In this sample, the ν ¼ 1=3 plateau is not fully
developed, and so the conductance is greater than e2=3h. (d) Con-
ductance vs back-gate voltage and magnetic field for the ν ¼ 1=3
plateau for sample 3, which had an effective radius rs3 ∼ 110 nm.

FIG. 3. (a) Charge stability diagram of sample 1 across three
conductance peaks in the ν ¼ 2 plateau at 320 mT and 700 mK.
Excited states are visible outside of the Coulomb gap. (b) Temper-
ature dependence of a conductance peak within ν ¼ 2 plateau,
with best fit temperature progression overlaid, 0.7, 2.0, 3.0, 5.0,
and 7.0 K. The tunneling conductance GT is obtained by
subtracting the bulk conductance (the QH plateau conductance)
from the total two-terminal conductance. (c) Charge stability
diagram of sample 2 taken at 9.36 T, within the ν ¼ −1=3
plateau. Conductance is normalized by RB, a smooth bias-
dependent background obtained by averaging over all differential
conductance curves. (d) Conductance oscillations in ν ¼ −1=3 at
increasing temperatures, from top to bottom 0.31, 0.53, 0.74,
1.05, 1.32, 1.52, 1.84, 2.10, 2.41, 2.68, and 2.90 K, taken at
9.36 T. Traces are successively offset 0.005 e2=h.
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dominant mechanism for charge transport is through
tunneling, where the mutual Coulomb repulsion energy
U is the largest energy scale. The height of the Coulomb
diamonds corresponds to U or the addition energy U þ Δε
(where U ∼ 4 and Δε ∼ 1 meV is the level spacing indi-
cated by the lines outside the Coulomb diamonds), depend-
ing on the total spin of the antidot. In the following
analysis, we neglect the effects of electron spin which is
justified by the large ratio of U=Δε, random fluctuations of
the electrostatic potential as a function of back-gate
voltage, and dephasing-induced broadening of the energy
levels (see the discussion below). In principle, however,
peak to peak separation is expected to alternate as a
function of total electron spin and back-gate voltage.
It is evident that the bath temperature, T ∼ 700 mK

(60 μeV), cannot account for the broadening of the
conductance peaks [FWHM ∼ 2.5 mV in back-gate voltage
as shown in Fig. 3(b), or ∼500 μeV in energy calculated
from the ratio between back-gate voltage period and the
corresponding Coulomb repulsion energy]. While asym-
metry in the tunneling probability between source and drain
to the antidot can in principle lead to conductance peak
broadening [30], such asymmetry needs to approach a
factor of ∼50 in order to account for the observed line-
shape width and peak height and so is unlikely the
broadening mechanism. To explain the conductance peak
broadening, we adopt a low-frequency noise model in
which fluctuations of the antidot confinement potential are
caused by charges tunneling into or out of localized
trapping sites. A similar model has been previously applied
to charge qubits—see, e.g., Refs. [22,31,32]. For moving
electrons, the low-frequency noise leads to a dephasing rate
Γϕ ¼ K=2ℏv, where K is the magnitude of pairwise
correlations of the noise potential, and v is the edge
mode velocity of the confined states [20]. Based on
the above observations, the parameters determining the
tunneling behavior into the antidot should satisfy
ΓL;ΓR; T < Γϕ < U;Δε; where ΓL;R are the tunneling
rates for source and drain, and U þ Δε ∼ 5 meV. In this
regime, the resonant peak follows a Breit-Wigner formula
[33,34]. Furthermore, the highest temperature, T ∼ 7 K
(600 μeV), does not exceed the level spacing or charging
energy. So approximately only one nondegenerate level
participates in charge transport through the antidot at the
temperatures studied here. The tunneling conductance is
then given by

GðμÞ ¼ e2

πℏ
Γ

4kBT
ΓLΓR

ΓL þ ΓR

Z
dε

cosh−2ðμ− ε=2kBTÞ
ε2 þΓ2

; ð2Þ

where Γ ¼ ð1=2ÞðΓL þ ΓRÞ þ Γϕ. Assuming symmetric
tunneling rates for source and drain, the conductance peak
at the lowest temperature, T ∼ 700 mK (60 μeV), is best
fit with tunneling rates ΓL ¼ ΓR ∼ 25 μeV and an
upper-bound dephasing rate Γϕ ∼ 291 μeV. Using these

parameters, conductance peaks at higher temperatures
calculated from Eq. (2) are in good agreement with the
measurements. We note that the edge mode velocity,
v ¼ Δεrs1=ℏ ∼ 3 × 105 m=s, is among the largest values
achieved in 2DES, which is a consequence of both the
sharpness of the confinement potential and the large Fermi
velocity of graphene.
We further discuss the bias and temperature dependence

of the ν ¼ −1=3 conductance oscillations in sample 2 in
order to estimate the confinement energy scales of the
fractional quasiparticles. The conductance traces as a
function of back-gate voltage were significantly broadened
due to a combination of dephasing and strong tunneling,
while the charge stability diagram [Fig. 3(c)] shows a
checkerboard pattern similar to the one known in the case
of coherent electron transport in a Fabry-Perot interferom-
eter (FPI), see, e.g., Refs. [12,35]. Although the geometry
of our antidot structure is different from a FPI, for strong
antidot-electrode tunneling the transport pattern in the
antidot can be viewed as interference of the two tunneling
points. The observation of the checkerboard pattern implies
then that the quasiparticle transport through our antidot is
coherent, Δε > Γϕ, and is not dominated by Coulomb
repulsion, as in, e.g., Fig. 3(a). This conclusion can be
supported by the fact that the quasiparticle interaction
energy is a factor of 9 smaller than the electron repulsion
energy U, and is further screened by the contacts.
We also note that the stripes shown in Fig. 2(d) for the

electron branch in an antidot sample have positive slope
regardless of the strength of the Coulomb repulsion. In
contrast, the slope in the noninteracting regime would be
negative in the case of a FPI, see Refs. [12,36]. This
difference stems from a simple geometric difference in the
2D confining potential, the cross-sectional area of which
increases with energy in the case of a FPI, and decreases
with energy in the case of an antidot. Of course, the slope
changes sign with the changing sign of the charge q of
tunneling particles, because of the changing sign of the
energy shift qVG induced by the back gate. This is
demonstrated in Figs. 2(b) and 2(d) for fractional “hole”
and fractional “electron,” respectively.
Traces taken at successively higher temperatures show

the conductance oscillations to be resolvable up to temper-
atures in excess of 2 K [Fig. 3(d)]. The checkerboard
spacing of ΔVBias ∼ 2 mV can be used to estimate the edge
mode velocity: v ¼ qΔVBiasrs2=ℏ. Since the precise struc-
ture of the tunneling contacts is not known, the magnitude
of the charge q coupling to the bias voltage is uncertain.
Using a minimum value of q ¼ e=3, we obtain a lower-
bound edge mode velocity of ∼7 × 104 m=s, again among
the highest values achieved in similar devices.
In conclusion, we have demonstrated localization of QH

quasiparticles in suspended graphene antidots samples, in
integer fillings ν ¼ 1, 2, and 6, as well as fractional fillings
ν ¼ �1=3. In both regimes, graphene showed robust single
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charge and flux oscillations with consistently larger energy
scales than previously achieved in GaAs-based 2DES. Our
work establishes a basis for further investigations, includ-
ing utilizing high quality graphene-based QH antidots (e.g.,
using suspended or hexagonal boron nitride-encapsulated
graphene) to study braiding of fractionally charged anyons
[37], or to fabricate novel quantum information processing
devices.
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