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When a strongly correlated system supports well-defined quasiparticles, it allows for an elegant one-
body effective description within the non-Hermitian topological theory. While the microscopic many-body
Hamiltonian of a closed system remains Hermitian, the one-body quasiparticle Hamiltonian is non-
Hermitian due to the finite quasiparticle lifetime. We use such a non-Hermitian description in the heavy-
fermion two-dimensional systems with the momentum-dependent hybridization to reveal a fascinating
phenomenon which can be directly probed by the spectroscopic measurements, the bulk “Fermi arcs.”
Starting from a simple two-band model, we first combine the phenomenological approach with the
perturbation theory to show the existence of the Fermi arcs and reveal their connection to the topological
exceptional points, special points in the Brillouin zone where the Hamiltonian is nondiagonalizable.
The appearance of such points necessarily requires that the electrons belonging to different orbitals have
different lifetimes. This requirement is naturally satisfied in the heavy-fermion systems, where the itinerant
c electrons experience much weaker interaction than the localized f electrons. We then utilize the
dynamical mean field theory to numerically calculate the spectral function and confirm our findings. We
show that the concept of the exceptional points in the non-Hermitian quasiparticle Hamiltonians is a
powerful tool for predicting new phenomena in strongly correlated electron systems.
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Introduction.—A standard theory of noninteracting met-
als and semimetals in two dimensions assumes that the
Fermi surface is represented by the closed lines or isolated
points, respectively, defining the transport and spectro-
scopic properties. In the presence of disorder or strong
correlations, however, the situation is much more delicate.
For instance, disorder in graphene induces the finite density
of states at the nodal point leading to nonzero conductivity
[1,2]. Other examples include the observation of the
quantum oscillations in the small gap Kondo insulators
SmB6 [3,4] and YbB12 [5,6], which is canonical evidence
for a finite Fermi surface. Finally, the pseudogap phase of
the hole-doped cuprate high-temperature superconductors
exhibits the Fermi arcs, opened Fermi surfaces with
endpoints [7], which indicate to the strong correlations
in the system and remain a matter of intense theoretical
discussion [8–11]. All these examples clearly demonstrate
that interactions in the correlated materials may have much
more drastic effect than simple renormalization of the bare
parameters of the band structure.
Recently, it was proposed that the nontrivial structure

of the Fermi surface in some cases can be explained within
the non-Hermitian topological theory [12–14]. This theory
naturally generalizes the topological description of quan-
tum matter, e.g., topological insulators and semimetals, to

the finite-temperature regime when quasiparticles experi-
ence scatterings due to disorder or interactions. While the
original many-body Hamiltonian is Hermitian, the effective
one-body quasiparticle Hamiltonian becomes non-
Hermitian because of the finite quasiparticle lifetime.
Such a description shows, in particular, that the presence
of disorder at zero temperature [14] or interactions at finite
temperature [13] generically stretchs the nodal points in
two-dimensional Dirac materials into the open bulk Fermi
arcs, provided the lifetimes of fermions from different
orbitals are different. The origin of the arcs is intimately
related to the presence of an interesting topological object,
“exceptional points” (EPs) in the Brillouin zone, at which
the Hamiltonian becomes nondiagonalizable [15]. These
points are the direct consequence of the non-Hermitian
description of an interacting system in terms of the single-
particle Hamiltonian. Importantly, the EPs are topologically
stable, implying that the Fermi arcs cannot be eliminated by
small perturbations [12,13].
In this work, we study how the non-Hermitian topology

reveals itself in the two-dimensional heavy fermion com-
pounds. Different types of electrons naturally have different
lifetimes in these materials, since the localized f electrons
experience much stronger electron-electron interaction than
the itinerant c electrons. This observation makes heavy
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fermions a perfect platform for searching for the EPs
and Fermi arcs. More specifically, we consider a Kondo
semimetal, which is understood as a Kondo insulator with a
small momentum-dependent hybridization gap that has
nodes on the Fermi surface. Conventional Kondo insulators
exhibit insulating behavior at low temperature because of
the hybridization at the Fermi energy, which crosses over to
a metallic regime with the c-electron Fermi surface as the
temperature raises [16]. In contrast, as we demonstrate
below, different points of the (nonhybridized) Fermi sur-
face in a Kondo semimetal with a momentum-dependent
gap undergo the crossover at different temperatures, lead-
ing eventually to the Fermi arcs which connect the EPs.
To describe a heavy-fermion system, we use the periodic

Anderson model (PAM) [17] in two dimensions with a
momentum-dependent (d-wave) hybridization gap. First,
using the phenomenological approach combined with the
perturbation theory, we show that the difference between
the electron correlations in c and f bands naturally leads to
two different lifetimes, resulting in EPs and Fermi arcs at
certain temperatures. To confirm our results numerically,
we further adopt the dynamical mean field theory (DMFT)
with the numerically exact continuous-time quantum
Monte Carlo solver. The spectral function calculated by
the DMFT clearly shows that there are Fermi arcs defined
as the lines in the Brillouin zone where the spectral function
has a peak at zero energy. We suggest that these Fermi arcs
may be directly observed by angle-resolved photoemission
spectroscopy (ARPES) in the small-gap Kondo lattices
such as CeNiSn [18].
Non-Hermitian quasiparticle Hamiltonian.—The non-

Hermitian Hamiltonian of the finite-lifetime quasiparticles
Hðk;ωÞ is conveniently defined through the retarded
electron Green’s function GRðk;ωÞ [12,13]:

Hðk;ωÞ≡ ½ω −GRðk;ωÞ�−1 ¼ H0ðkÞ þ Σðk;ωÞ; ð1Þ

where H0ðkÞ is the bare (noninteracting) Hamiltonian and
Σðk;ωÞ is the electron’s self-energy that includes the effect
of the electron-electron interaction. Note that the quasi-
particle Hamiltonian Hðk;ωÞ can be non-Hermitian with
the complex spectrum Enðk;ωÞ. In general, Σ is a sum of
the Hermitian part Σ0 and the non-Hermitian part Γ:
Σ ¼ Σ0 − iΓ. Σ0 renormalizes the bare band structure, while
Γ leads to finite quasiparticle lifetimes. The spectrum
Enðk;ωÞ determines the complex poles ω ¼ EnðkÞ of the
Green’s function according to En ¼ Enðk; EnÞ. In the
vicinity of a first-order pole, the Green’s function takes
the form GRðk;ωÞ ∼ ½1=ω − EnðkÞ�. The real part of EnðkÞ
determines the quasiparticle’s dispersion, while its imagi-
nary part defines the quasiparticle’s inverse lifetime.
The important difference between Hermitian and non-

Hermitian Hamiltonians is that the latter can be non-
diagonalizable at certain momenta. Those points are
called “exceptional points" in the mathematical physics

literature [15]. At the EPs, linearly independent eigenstates
do not span the full Hilbert space. One of the authors
showed that these EPs in two and higher dimensions are
topologically stable [12]. Topological EPs can appear in the
quasiparticle spectrum of zero- and small-gap materials
such as Dirac semimetals in two dimensions, provided the
electrons corresponding to the different orbitals have
different lifetimes [13]. We show that this scenario is also
realized in the heavy fermion systems with the momentum-
dependent hybridization gap, where the two orbitals cor-
respond to the itinerant c and localized f electrons [19–21].
To study heavy-fermion materials, we consider the PAM

defined as

H ¼
X
kσσ0

ð f†kσ c†kσ Þ½H0ðkÞ�σσ0
�
fkσ0

ckσ0

�
þHint; ð2Þ

with the lattice Hamiltonian

½H0ðkÞ�σσ0 ¼ δσσ0

�
ϵfk vk
vk ϵck

�
; ð3Þ

and the interaction term Hint ¼ U
P

i f
†
i↑fi↑f

†
i↓fi↓. Here,

ckσ (fkσ) is an annihilation operator for an itinerant c
(localized f) electron with momentum k and spin σ,
with dispersions ϵck ¼ −2tðcos kx þ cos kyÞ − μ and ϵfk ¼
2tfðcos kx þ cos kyÞ þ ϵf0 − μ, respectively. We use t as
the unit of the energy scale hereafter, and μ here is the
chemical potential. We consider the case of half-filling,
which corresponds to μ ¼ 0 and ϵf0 ¼ −U=2, and is
characterized by the particle-hole symmetry. At half-filling,
the term ϵf0 ¼ −U=2 is exactly canceled by the Hartree
part of the electron’s self-energy, so we omit it for the rest
of the Letter for brevity. The hybridization gap is expressed
as vk ¼ v for the s-wave case which describes the Kondo
insulators and vk ¼ vðcos kx − cos kyÞ for the d-wave case
which corresponds to the Kondo semimetals, respectively.
In this work, we focus on the d-wave gap, which has point
nodes on the (unhybridized) Fermi surface at ðkx; kyÞ ¼
ð�π=2;�π=2Þ [22].
It is known that the PAM exhibits a number of strongly

correlated phenomena showing the non-Fermi-liquid
behavior [25] and undergoing the Mott transition [26–28]
near some particular fillings. In our work, we stay away
from these special fillings, i.e., in the regime where the
Fermi liquid description remains adequate.
Because of the fact that the c electrons in model Eq. (2)

are not interacting, only f electrons acquire a nonzero self-
energy, leading to

½Σðk;ωÞ�σσ0 ¼
�
Σfðk;ωÞδσσ0 0

0 0

�
ð4Þ

and resulting in different lifetimes for different orbitals. This
point is explained in detail in Sec. S2 of the Supplemental
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Material (SM) [22]. Thus, the two-lifetime description
naturally arises in the PAM.
The f-electron self-energy is computed using a second-

order perturbation theory in Sec. S2 of the SM [22] (see
also, Ref. [29]). At temperatures comparable to or higher
than the hybridization scale vwe can ignore the momentum
dependence of ΣðωÞ. This is because the finite-temperature
broadening renders the f-band approximately flat. Hence,
the on site interaction and a flat band together result in a
local self-energy. Since we are interested in the spectrum of
the low-energy electron excitations, we focus on the low-
frequency behavior of the self-energies. In particular, in
the zero-frequency limit, Σf can be treated as a purely
imaginary constant, Σfðk; 0Þ ¼ −iΓ, while the real part
vanishes because the particle-hole symmetry pins the
energy of the f electron to zero. Furthermore, at small
frequencies, one can expand Σf in the Taylor series:

ΣfðωÞ ¼ −a1ω − iðΓþ a2ω2Þ þ � � � : ð5Þ

Our DMFT calculations presented later show that coef-
ficients a1 and a2 are generally positive. The inclusion of
the positive higher-order terms a1 and a2 does not change
the qualitative features of the electron spectrum discussed
next. In particular, the effect of including a1, which is the
leading term of the real part of ΣfðωÞ, is the renormaliza-
tion of certain band parameters: it renormalizes tf to Ztf, Γ
to ZΓ, and vk to Z1=2vk, respectively, while keeping t
unaffected. (This is analyzed in detail in Sec. S2 of the SM.)
Here, Z≡ ð1þ a1Þ−1.
Exceptional points and bulk Fermi arcs.—We now

discuss the electron spectral function and demonstrate
the Fermi arcs in the d-wave PAM. The spectral function
derived from Eq. (1) is shown in Fig. 1.

In general, the inverse lifetime Γ is small at low
temperatures and large at high temperatures, reflecting a
long and a short quasiparticle lifetime, respectively. Hence,
we demonstrate low-temperature and high-temperature
phenomena using Γ ¼ 1, Γ ¼ 2, and Γ ¼ 6, respectively.
In the s-wave PAM, there is an isotropic gap in the whole
momentum space as shown in Figs. 1(a) and 1(g). With
increasing Γ, the gap is closed on an entire Fermi surface.
This is the standard crossover from a Kondo insulator at
low temperatures to a metallic state with a c-electron Fermi
surface at high temperatures. In the d-wave PAM, on the
contrary, we can clearly see the bulk Fermi arcs at low
temperatures, as shown in Figs. 1(d) and 1(j). The Fermi
arcs grow into a full c-electron Fermi surface at high
temperatures.
The Fermi arcs observed in the d-wave PAM can be

explained as follows. With Σ ¼ −iΓ − a1ω, the complex
poles of the Green’s function are given by

E�ðkÞ ¼ �Z
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMk − iΓÞ2 þ 4Z−1jvkj2

q

þ Z
2
ðϵfk − iΓþ Z−1ϵckÞ; ð6Þ

with Mk ≡ ϵfk − Z−1ϵck. This complex spectrum is similar
to that for the Dirac semimetals in two dimensions if we
replace Mk and jvkj with vxkx and vyky, respectively (and
assuming Z ¼ 1) [13].
The spectral function ρðω; kÞ≡ −ð1=πÞImTrðGR −GAÞ,

with GA ≡ ½GR�†, is given by

ρðω; kÞ ¼ −
2

π
Im

�
Ak

ω − EþðkÞ
þ Bk

ω − E−ðkÞ
�
; ð7Þ

FIG. 1. (a)–(f) Momentum dependence of the zero-energy spectral functions ρðω ¼ 0þ iη; kx; kyÞ extracted from Eq. (7). We set
v ¼ 0.75, t ¼ 1, tf ¼ 0, and η ¼ 0.01. The red circle, green square, and orange diamond denote points at ðkx; kyÞ ¼ ðπ=4; 3π=4Þ,
ð3π=8; 5π=8Þ, and ð7π=16; 9π=16Þ, respectively. (g)–(l) Energy dependence of the spectral function ρðω; kx; kyÞ at these points in
momentum space. The results for the s-wave periodic Anderson model (PAM) are shown in (a)–(c) and (g)–(i). The results for the
d-wave PAM are shown in (d)–(f) and (j)–(l). The f-electron inverse lifetime Γ is fixed to Γ ¼ 1 for (a), (g), (d), (e), Γ ¼ 2 for (b), (h),
(e), (k), and Γ ¼ 6 for (c), (i), (f), (l).
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with

Ak ¼
ð1þ ZÞEþðkÞ − Zðϵck þ ϵfk − iΓÞ

EþðkÞ − E−ðkÞ
;

Bk ¼
Zðϵck þ ϵfk − iΓÞ − ð1þ ZÞE−ðkÞ

EþðkÞ − E−ðkÞ
: ð8Þ

The form factors Ak and Bk originate from the nonzero
real part of the self-energy and both equal to 1 in the case
when a1 ¼ 0.
We see that the spectral function is given by the sumof two

Lorentzians,whose locations andwidths are given by the real
and imaginary parts of E�, respectively. In particular, we
focus on the line ϵck ¼ ϵfk ¼ 0, which is the location of the
high-temperature c-electron Fermi surface. Along this line,
Eq. (6) is simplified to the following form:

E�ðkÞ ¼ �Z
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Γ2 þ 4Z−1jvkj2

q
þ Zϵfk − iZ

Γ
2
: ð9Þ

We first discuss how the temperature-dependent Γ
affects the electron spectrum and spectral function at a
fixed momentum k at the unhybridized Fermi surface,
ϵck¼ϵfk¼0. For simplicity, we consider the case Z ¼ 1

(a1 ¼ 0). In general, we expect Γ to increase with temper-
ature and approach zero in the T ¼ 0 limit. The competition
between the temperature-dependent Γ and the hybridization
vk can explain the Kondo crossover. At low temperatures,
when 4jvkj2 > Γ2, E� have different real parts, and the
spectral function is a superposition of two peaks. The
energy difference between the two peaks,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4jvkj2 − Γ2

p
,

represents a hybridization gap. This indicates that the f and
c electrons are hybridized, and the f electrons join the c
electrons to contribute to the volume of the Fermi surface.
At high temperature, when 4jvkj2 < Γ2, E� have the same
real part, and the spectral function exhibits a single peak
located at ω ¼ 0. This indicates that there is no gap, and
corresponding momenta k form a Fermi surface.
For the s-wave PAM, the crossover between the two

behaviors happens simultaneously for all k at the tempera-
ture corresponding to Γ ¼ 2v, accompanied with the
emergence of a complete c-electron Fermi surface as the
temperature raises. For the d-wave PAM, in contrast,
the crossover for the different points on the Fermi surface
occurs at different temperatures determined by vk. In
particular, for Γ < 2v, the Fermi surface is separated into
two regions by EPs located at 2jvkj ¼ Γ, where E� become
degenerate. The hybridization gap then develops only for
the momenta satisfying 4jvkj2 > Γ2, while momenta with
4jvkj2 < Γ2 form Fermi arcs. At zero temperature, the
system is a Kondo semimetal with point nodes. At finite
temperature, the nodal points split into the Fermi arcs
which grow longer as the temperature and Γ increase,

until the full c-electron Fermi surface emerges at Γ ¼ 2v,
see Fig. 2.
We notice that when the two peaks in the spectral

function are closer than the peak width, they become
inseparable experimentally. Hence, the precise identifica-
tion of the ending points of the Fermi arcs may strongly
depend on the details of the data analysis, not necessarily
giving the exact position of the EPs [22]. However, despite
this limitation of the spectroscopy methods, the existence
of the Fermi arcs is profoundly tied to the EPs in the
quasiparticle Hamiltonian.
Dynamical mean field theory.—To treat the heavy

fermion systems more accurately, we use the dynamical
mean field theory (DMFT). In the DMFT, we assume that
the self-energy does not depend on the momentum:

Σfðk;ωÞ ¼ ΣfðωÞ: ð10Þ

This assumption is appropriate when the temperature is not
too low compared to the maximum of the hybridization
energy [22]. The momentum dependence does not affect

FIG. 2. (a) ðMk; jvkjÞ space in the two-dimensional model for a
Kondo insulator. The shaded region indicates the possible
ðMk; jvkjÞ region. The red circle, orange diamond, and green
square denote the value of the lifetime Γ at T ¼ 1=4; 1=20, and
1=60, respectively. The exceptional points (EPs) move from
the origin on the Mk axis with increasing Γ. The EPs disappear
when they are outside the shaded region. (b) Schematic figures
of the EPs. The EPs move from the middle of the line ϵck ¼ 0 to
the corners of the square (unhybridized Fermi surface) as
temperature increases. (c) Momentum dependence of the real
part of the complex energy spectrum of the non-Hermitian
quasiparticle Hamiltonian with different temperatures from
T ¼ 1=60 to T ¼ 1=4. The vales of Γ are extracted from the
DMFT calculation.
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the appearance of the bulk Fermi arcs. We set v ¼ 0.75 and
tf ¼ 0. To calculate the local and momentum-dependent
spectral functions ρðωÞ and ρðω; kÞ, we utilize the DMFT
with the numerically exact segment-based hybridization-
expansion continuous-time quantum Monte Carlo impurity
solver (CT-HYB) [30]. We point out that there is no
fermion sign problem since the off-diagonal elements of
the self-energy in the spin space are zero in our two-orbital
system [31]. After confirming that the self-energy for c
electrons is zero in the two-orbital DMFT calculation, we
use the one-orbital DMFT calculation with integrating
out the c-electron degrees of freedom. Here, the effective
impurity problem is solved by an open-source program
package, iQIST [32]. We set U ¼ 8.
Figure 3 shows the spectral functions and the Fermi arcs.

To calculate the real-frequency self-energy ΣðωÞ and the
spectral function ρðω; kÞ, we use the Padé approximation
as the method for the numerical analytic continuation of
the self-energy Σðiωn → ωÞ. After using the Padé approxi-
mation, we fit the self-energy with the polynomial
ΣfðωÞ ¼ −ða1ωþ a3ω3Þ − iðΓþ a2ω2 þ a4ω4Þ in the
region −1 < ω < 1. We find that the set of parameters
ðΓ; a1; a2; a3; a4Þ equals (5.708 95, 2.284 19, 1.013 68,
1.158 38, 0.580 893) at T ¼ 1=4, (2.709 29, 9.546 93,
5.497 01, −2.19662, 5.382 39) at T ¼ 1=20, and (2.061
42, 11.876 6, 16.49, −10.2929, −6.21199) at T ¼ 1=60,
respectively. As the temperature decreases, the spectral
function starts having a dip at ω ¼ 0 close to the points
k ¼ ð0;�πÞ and ð�π; 0Þ along the (unhybridized) Fermi
surface line ϵck ¼ ϵfk ¼ 0, as shown in Figs. 3(d)–3(f).

This transition from a peak to a dip at ω ¼ 0 marks the
boundaries of the Fermi arc.
Summary.—In this work, we studied the heavy-fermion

systems using PAMs.We demonstrated that the difference in
electron correlations between the c and f electrons in PAMs
naturally results in two distinct lifetimes in the non-
Hermitian quasiparticle Hamiltonian. This, combined with
a d-wave hybridization gap, leads to the appearance of the
EPs in the Hamiltonian and Fermi arcs in the electron
spectral function, provided the temperature is sufficiently
low. This result should be contrasted with the s-wave
hybridization, where the Fermi arcs and the EPs are absent.
OurDMFTcalculationwith a numerically exact continuous-
time quantum Monte Carlo solver confirmed our findings.
These unusual Fermi arcs due to the EPs can be observed
by ARPES, which measures electron spectral function.
Our results are qualitatively applicable to other systems.
In a two-dimensional Kondo system with the p-wave
hybridization, Vk ¼ vk · σ with vk ¼ ðsin kx; sin kyÞ, the
cross-shaped Fermi arcs appear around points k¼ð�π;0Þ
and ð0;�πÞ. In a three-dimensional system, the Fermi arc
becomes the three-dimensional Fermi arc defined by the
surfacewith the boundaries in momentum space, which will
be studied elsewhere.
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