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From soda cans to space rockets, thin-walled cylindrical shells are abundant, offering exceptional load
carrying capacity at relatively low weight. However, the actual load at which any shell buckles and collapses
is very sensitive to imperceptible defects and cannot be predicted, which challenges the of such structures.
Consequently, probabilistic descriptions in terms of empirical design rules are used and designing reliable
structures requires the use of conservative strength estimates. We introduce a nonlinear description where
finite-amplitude perturbations trigger buckling. Drawing from the analogy between imperfect shells which
buckle and imperfect pipe flow which becomes turbulent, we experimentally show that lateral probing of
cylindrical shells reveals their strength nondestructively. A new ridge-tracking method is applied to
commercial cylinders with a hole showing that when the location where buckling nucleates is known we can
accurately predict the buckling load of each individual shell, within �5%. Our study provides a new
promising framework to understand shell buckling, and more generally, imperfection-sensitive instabilities.
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Compress an empty soda can from its top and itwill remain
stable over a considerable range of loads. However, at a
critical load, the can eventually buckles, violently collapses,
and irreversibly deforms. A classical linear stability analysis
greatly overestimates the buckling load of thin cylinder shells
and domes [1–3], because the system is extremely sensitive
to defects [4–9].
Classical theory mostly cannot capture the influence of

defects and thus, in general dramatically overestimates the
carrying load of engineered shells, infamously affecting
structural reliability [10]. The ratio between the actual
measured buckling load and the theoretical prediction is
termed the knock-down factor. The knock-down factor tends
to decrease with the ratio of the shell’s radius of curvature to
its thickness,R=t, but there are extreme stochastic variations
between nominally identical shells, as shown in Fig. 1. Fifty
years ago, NASA SP-8007 proposed a conservative phe-
nomenological “design rule” [4], which estimates a lower
bound for thedistributionof knock-down factors and remains
the basis for US and European design codes even today.
Any sound prediction of the knock-down factor of a

specific manufactured shell currently requires complete
knowledge of the shell’s imperfections. A full characteri-
zation of imperfections is extremely challenging [10] and
practically impossible for real engineered structures.
Consequently, the NASA design rule which on average
severely underestimates buckling loads remains still in use.
Here we introduce a nondestructive method that accurately

predicts the buckling load of an individual defected shell
without prior knowledge of imperfections.
Characterizing defect sensitivity as observed in shell

buckling is notoriously difficult because in any experimen-
tal setup a multitude of details need to be controlled
practically perfectly. Notably, a similarly challenging sit-
uation arose in fluid mechanics, where the concepts of
finite-amplitude perturbations in combination with very
careful experiments lead to a complete rethinking of the
transition from laminar flow to turbulence in pipe flows
[11–14]. Just as there is no universal buckling load at which
real imperfect shells buckle, there is no universal Reynolds
number at which turbulence develops in real, imperfect

FIG. 1. Knockdown factor σ=σc vs R=t collected by NASA
with the empirical design rule indicated by the dashed line. (Data
from Seide et al. (1960) [1]).
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pipes; and the critical flow speed at which turbulence
occurs is highly sensitive to imperfections.
The challenging problem of the transition to turbulence

is tackled within a nonlinear framework by considering
the response of a perfect system, an ideal pipe, to a jet
perturbation of finite amplitude, Ajet, that can trigger
turbulence [11]. In the context of shell buckling, an
analogous approach implies revisiting the NASA data,
shown in Fig. 1, by considering the axial load as an
externally imposed control parameter, like the Reynolds
number. Since controlling manufacturing imperfections is
harder for thinner shells, the geometrical quantity R=t
(radius over thickness) should be treated as a proxy for the
vulnerability to defects of a given size. With this inter-
pretation, the phenomenology of the transition to turbu-
lence in pipe flow and the buckling of cylindrical shells
appears strikingly similar, as shown in Figs. 2(a) and 2(b).
Inspired by the hydrodynamic analogy, we recently

developed an experimental and theoretical framework
[15] to study shell buckling. The jets, which trigger
turbulence in pipes correspond to a lateral probe, or a
“poker,” in our system, as shown on Figs. 2(c) and 2(d).
Similar ideas were recently pursued by Hutchinson,
Thompson, and co-workers [16–19] as well as others
[20–22]. Analogous experiments were performed by
Reis and co-workers for pressurized hemispherical shells
[23,24] and cylindrical shells with radially applied pertur-
bation loads were studied in the context of aerospace
applications [25–33].
In contrast to previous work, in our approach the poker-

induced deformation is not interpreted as a defect; instead,
the poker is a probe exploring the system’s nonlinear
response to finite-amplitude perturbations. By measuring
the poker force applied on the shell FP as a function of
displacement, DP, we recently quantified the critical
perturbations that trigger buckling for varying axial loads
FA. Mapping out the conditions under which buckling
occurs, we identified a universal stability landscape for

cylindrical shells, represented as a surface in a (FA, FP,DP)
three-dimensional space [15,34].
The landscape, which can be probed experimentally,

characterizes the stability of a shell, which, in the most
general case, is dictated by the complex correlation structure
of its many defects. The stability landscape features a valley,
a lake, and a ridge (as described in Ref. [15] and Fig. 4).
Advancing the poker beyond the ridge, defined by the peak
poker force,will ultimatelybring the system to the lake shore,
where the shell buckles. As FA is increased, the ridge
descents, asymptoting towards a zero maximal poker force
where the axial load for spontaneous buckling is reached. It is
therefore tempting to track the path of the ridge and attempt
to infer the critical buckling load without reaching it.
Implementing ridge tracking as a nondestructive method
to predict the load-carrying capacity of a given shell and
rethinking buckling as a nonlinear finite-amplitude insta-
bility would enable us to finally move beyond the very
conservative NASA design rule and develop a fundamental
and scalable approach to confront imperfection sensitivity in
the design and control of thin shells.
Drawing from the analogy between imperfect shells

which buckle and imperfect pipe flow which becomes
turbulent, we show that lateral probing of cylindrical shells
can indeed reveal their strength. By examining the safe
regions of the stability landscape and extrapolating to the
critical conditions, we use lateral probing to nondestruc-
tively predict the strength of individual imperfect shells. We
direct buckling nucleation, by intentionally introducing a
guiding defect in the shell. Doing so, we show, as a proof of
concept, that probing near this guiding defect yields an
accurate estimate of the shell’s buckling load. Our results
show that when the guiding defect is identified, tracking the
ridge and extrapolating towhere it vanishes works extremely
well and predicts the critical buckling load to within 5%
precision. This result considerably surpasses the NASA
design rulewhich estimates a lower bound for thedistribution
of nominally identical shells while we accurately predict the
strength of individual shells. Ridge tracking thereby allows
for a deterministic rather than a probabilistic prediction, and
thereby opens avenues towards new design and control
strategies for thin shell structures.
The experimental setup consists of a custom-made

biaxial mechanical tester (ADMET, Inc.) described in
detail previously [15]. A vertical actuator, equipped with
a load cell, applies an axial load FA on the sample by
moving at a constant speed of 5 mm=min. The lateral
actuator has a steel marble of diameter 4.7 mm at its tip and
serves as the poker. Importantly, axial and lateral loading
are always displacement controlled, and lateral poking is
performed at set end shortening; the axial load varies by
less than 2% during poking. An acquisition card (National
Instrument DAQ USB-6001) records forces and displace-
ments, and controls the actuators analog signal, enabling
autonomous ridge tracking. The samples are empty 7.5 oz

(a) (b)

(c) (d)

FIG. 2. (a) Ajet vs Re for experiments by Darbyshire and Mullin
[11]. (b) R=t vs knockdown factor σ=σc for NASA’s data (Fig. 1).
(c),(d) Lateral poking of the shell corresponds to the transverse jet
perturbation and probes the stability of the linearly stable shell to
well-controlled perturbations.
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mini Coke cans, made of aluminum. These are cylindrical
shells of radius R ¼ 28.6 mm, midplane thickness t ¼
104� 4 μm (radius-to-thickness ratio R=t ¼ 274), and
height L ¼ 107 mm. The buckling load of each shell is
dictated by the complex correlation structure of its many
defects; it is thus practically impossible to predict where
buckling will nucleate. We therefore intentionally introduce
a guiding defect that fixes the preferential nucleation point to
a predefined location close to the probe: A hole of 1 mm in
diameter, is drilled 1 mm above the midplane of the cylinder
as shown in Fig. 3(a). The edge of the hole is circular and
slightly curved inwards. At the chosen parameters, with a
radius below the characteristic scale of

ffiffiffiffiffi

Rt
p ¼ 1.7 mm the

strength of the can is not determined by the hole [35,36].
Instead the distribution of spontaneous buckling loads
remains broad indicating that the stability properties remain
dominated by the unknown defects of each specific can.
Ridge tracking requires systematically poking the sam-

ple under gradually increasing axial loads without trigger-
ing buckling, as shown for a typical experiment in Fig. 3(b).
In this example, the sample is initially loaded to an axial
load F0

A ¼ 600� 1 N, which is less than 25% of the
strength predicted by linear stability analysis. The axial
end shortening is then set, and the poker slowly advances
towards the sample at a constant rate of 2 mm=min,

contacting the shell 1 mm below the hole. Once the poker
contacts the shell, the probe force gradually increases.
When the force reaches its peak Fmax

p , the poker automati-
cally stops at a displacement Dmax

p , and returns to its initial
position, as shown in the inset of Fig. 3(b). In this example,
the point (FA ¼ 592 N,Dmax

p ¼ 0.44 mm, Fmax
p ¼ 0.75 N)

defines the first point of the ridge, as plotted in Fig. 3(b). As
previously reported, this process is reversible and does not
damage the sample [15].
The axial load is then sequentially increased in steps of

approximately 25 N and the next poker force-displacement
curve is measured. These force-displacement curves gradu-
ally build up the sample’s stability landscape, which
exhibits a distinct ridge. The procedure is then stopped
when the peak poker force Fmax

p falls below 0.3 N. A linear
extrapolation of the ridge to vanishing poker force yields a
prediction for the spontaneous buckling load. In this
specific experiment, ridge tracking predicts a buckling
load of Fpredicted

A ¼ 893 N. To test this prediction, the
sample is compressed until it spontaneously buckles at a
load of Fbuckling

A ¼ 887 N, remarkably close (within 0.5%)
to the predicted value as shown in Fig. 3(b).
In total, 38 samples were tested, with initial loads

ranging between F0
A ¼ 522 N to F0

A ¼ 694 N, and an
average load increment of 23 N. One exceptionally fragile

(a) (b)

(c) (d)

FIG. 3. (a) Experimental setup with close-ups of hole and poker tip. (b) A typical example of ridge tracking. The star indicates the
prediction for the spontaneous buckling load. Inset: Fp vs Dp for FA ¼ 641 N. (c) Five examples of successful ridge tracking. Each
spontaneous buckling load is indicated by a star. Inset: Ridge of one can for four different poking locations. (d) Predicted vs measured
spontaneous buckling load for all 38 tested shells. Green triangles indicate failure initiating far from the guiding hole. Inset: Relative error η.
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sample failed at the first loading, before being probed.
Otherwise, samples sustained repeated loading cycles, their
ridges follow a straight line in the plane (FA, Fmax

p ), while
converging towards a wide range of buckling loads, as
shown for five examples in Fig. 3(c).
Intriguingly, the ridges are only straight when probing is

done near the hole. Probing further away from it yields
ridges that turn towards the buckling-load prediction, as
shown in the inset to Fig. 3(c). When probing beyond a
distance of approximately 1 cm from the hole, the ridges
do not point towards the actual buckling load, and the
prediction fails—hence the importance of introducing a
preferred nucleation location and probing close to it.
Overall, for the 38 samples tested, the ridge-tracking

protocol accurately predicts the buckling load over a
wide range of critical loads, from Fbuckling

A ¼ 761 N to
Fbuckling
A ¼ 1108 N, as shown in Fig. 3(d). The relative

error of the prediction, η ¼ ðFpredicted
A − Fbuckling

A Þ=Fbuckling
A

has a standard deviation of 6.9% for the whole bunch. Even
more remarkably, when buckling does initiate near the hole,
this deviation drops to 2.7% and the average error η is 1.6%
[blue diamonds in Fig. 3(d)]. This confirms that ridge
tracking works extremely well if we probe in the vicinity of
the hole guiding nucleation of buckling. Besides providing
a promising nondestructive method to probe the load-
carrying capacity of a shell, these experiments unambig-
uously show that the ridge is locally distorted by the defects
controlling the load-carrying capacity. We now propose an
interpretation of the observed behavior inspired by the
analogy with the onset of turbulence in pipe flow, based on
a dynamical-system approach.
The dynamical systems approach suggests an appealing

conceptual framing for the cylinder buckling problem,
illustrated schematically in Fig. 4. All deformations of a
given cylinder span the high dimensional state space of the
system. Specific deformations including the undeformed
cylinder, periodic eigenmodes considered in classical sta-
bility analysis [6,37], but also any local deformation induced
by a poker at a specific location are points in the state space.
Thus, deforming the shell with an advancing poker corre-
sponds to tracing out a continuous path in the state space.
When the shell is compressed at a subcritical axial load, the
unbuckled state is linearly stable, but nonlinearly unstable.
Small deformations will relax back to the unbuckled state
while large amplitude deformations may trigger buckling.
The state-space region around the unbuckled state in which
deformations decay forms the finite basin of attraction of the
unbuckled state. It can be figuratively thought of as a deep
concave bowl, the unbuckled state at its base, and all stable
deformations roll towards it.
States outside the basin of attraction will not return to

the unbuckled state but lead to a nonlinear instability and
trigger buckling. Separating deformations that trigger
buckling from those that return to the unbuckled state is
the basin boundary, a codimension one manifold in the state

space defining the nonlinear stability threshold. As the
axial load increases, the basin of attraction shrinks, until the
basin boundary eventually reaches the unbuckled state,
as shown in Fig. 4(a). At this load, the basin vanishes, the
unbuckled state becomes linearly unstable, and sponta-
neous buckling is triggered by infinitesimal perturbations.
For a perfect shell, the basin collapses at the critical load
computed by standard linear stability theory.
For a real shell with imperfections, we expect all state-

space structures and specifically the basin boundary to be
distorted compared to the perfect shell, as shownonFig. 4(b).
Consequently, the basin boundary will reach the unbuckled
state at a different load, namely the spontaneous buckling
load of the defected shell.
Embedded in the basin boundary are unstable saddle

points including localized single dimple deformations
[20,38–40] which define the critical amplitude of a local-
ized perturbation triggering buckling nonlinearly. The
advancing poker thus probes a path in the state space that
leads to the saddle point within the basin boundary.
Introducing an additional controlled imperfection, such
as slightly curved holes, deforms the basin of attraction,

(a) (b)

(c)

FIG. 4. Schematic 2D projection of the system’s state space for a
perfect shell (a) and one with imperfections (b). The stability
landscape (c) probes the basin boundary along a path of dimple-
shaped deformations induced by lateral poking. The point on the
ridge (blue dot) is located between the basin boundary and the
unbuckled state. It varies withFA creating the ridge [blue line in (c)]
that asymptotes to zero when the basin of attraction vanishes and
spontaneous buckling is induced. Shell imperfections distort the
basin boundary and modify its experimentally accessible represen-
tation, the stability landscape. Ridge tracking reveals the influence
of imperfections while nondestructively probing the ridge.
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and likely moves the corresponding single dimple saddle
point closer to the unbuckled state. Thus for the real shell,
increasing the axial load will trigger the localized unstable
mode at the location of the defect first, which rationalizes
how the hole controls the location where buckling is
preferentially nucleated.
We suggest that the stability landscape is composed of

experimentally accessible projections of the basin of
attraction along one path of deformations in a direction
corresponding to the single dimple deformations and at
different axial loads. The stability landscape thus indicates
how the basin of attraction, measured in the direction of the
guiding imperfection shrinks under increasing axial load
and at which load it vanishes. Probing the shell at one
location, passing the ridge and reaching the lake, thus
yields the distance between the unbuckled state and the
basin boundary, as shown in Fig. 4(c). A convenient feature
of ridge tracking, as opposed to lake tracking, is that we
are tracking the height of the cliff, and not its width, while
both vanish at the critical axial buckling load. This probing
protocol keeps the system safely within the basin of
attraction.
The successful prediction of spontaneous buckling

loads highlights the utility of transferring nonlinear
concepts from the study of turbulence transition in
subcritical shear flows to shell buckling. Treating buck-
ling as a nonlinear instability triggered by finite-amplitude
perturbations of a subcritically loaded shell rather than
as a linear instability problem, rationalizes the striking
sensitivity to defects. Moreover, it provides avenues for
predicting the strength of a shell in the presence of an
unknown defect distribution. We have specifically shown
that characterizing the load-dependent critical perturba-
tion amplitude via ridge tracking can predict the strength
of commercial mini Coke cans. The method involves
introducing an additional localized imperfection in the
form of a hole and probing in the vicinity of it. Notably,
introducing the hole does not determine the strength of the
shell which still varies greatly. In fact the hole does not
appear to weaken the can at all; thus, introducing holes
does not trivialize the challenge of buckling-load pre-
diction. We hypothesize that the additionally introduced
imperfection guarantees that the unstable mode excited
first will indeed be a local dimple buckle near the probing
location. Under these conditions, the stability landscape
provides the most relevant projection of the basin boun-
dary. Without a priori knowledge of where buckling will
initiate, ridge tracking will likely require us to probe at
numerous locations. The precise conditions under which
the additional controlled defect aids probing yet not
affects the strength of the shell itself remain to be
investigated in detail. Interestingly, while the specific
hole does not determine the strength of the can, it does
seem to serve as a nucleus or lightning rod for the
nucleation of buckling, forcing a specific initiation

location and allowing ridge tracking to work.
Introducing controlled defects and ridge tracking opens
new and exciting approaches for probing and controlling
the stability of thin shell structures.
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