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Observation of Flat Frequency Bands at Open Edges and Antiphase Boundary Seams
in Topological Mechanical Metamaterials
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Motivated by the recent theoretical studies on a two-dimensional (2D) chiral Hamiltonian based on the
Su-Schrieffer-Heeger chains [L. Zhu, E. Prodan, and K. H. Ahn, Phys. Rev. B 99, 041117(R) (2019)], we
experimentally and computationally demonstrate that topological flat frequency bands can occur at open
edges of 2D planar metamaterials and at antiphase boundary seams of ring-shaped or tubular metamaterials.
Specifically, using mechanical systems made of magnetically coupled spinners, we reveal that the presence
of the edge or seam bands that are flat in the entire projected reciprocal space follows the predictions based
on topological winding numbers. The edge-to-edge distance sensitively controls the flatness of the edge
bands and the localization of excitations, consistent with the theoretical analysis. The analog of the
fractional charge state is observed. Possible realizations of flat bands in a large class of metamaterials,
including photonic crystals and electronic metamaterials, are discussed.
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Flat energy bands have been the focus of intense research
in photonic crystals, such as the Lieb lattice, due to the
possibility of trapping photons, which has technological
significance [1-8]. They have also gained a lot of attention
[9] following the discovery of superconductivity in twisted
bilayer graphenes [10—14] and the pursuit of nearly flat
bands in the fractional Chern insulators [15-20]. Recently,
there has been a theoretical proposal for flat energy bands
within antiphase and twin boundaries and at open edges in a
system described by a topological two-dimensional (2D)
model Hamiltonian [21]. Unlike the Lieb lattice, the flat
band states occur only at edges or domain boundaries,
giving a unique controllability through patterning. Unlike
twisted bilayer graphenes or fractional Chern insulators,
the flatness of the bands in the entire projected reciprocal
space does not require tuning of parameters. In this Letter,
we experimentally demonstrate the realization of the
Hamiltonian and the flat bands in metamaterials, using
mechanical systems made of interacting spinners [22,23].
By examining how the width of the edge band narrows in
frequency as the edge-to-edge distance increases, we show
the presence of the topological flat frequency bands at the
edges. It is revealed that the size of the localized excitations
at the edges correlates with the width of the edge band. The
analog to electronic charge fractionalization [24] is found.
We experimentally verify the presence of a midgap mode at
the antiphase boundary seam of a ring-shaped spinner
system, and computationally find a flat antiphase boundary
seam band for a tubular system.

Systems of magnetically coupled spinners are versatile
experimental platforms for various Hamiltonians [22,23].
In mapping between electronic tight-binding Hamiltonians
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and magnetically coupled spinner systems, the intersite
electron hopping corresponds to the interspinner magnetic
interaction controlled by the distance between the mag-
nets. The electronic model Hamiltonians for the flat bands
at open edges and twin and antiphase boundaries studied
in Ref. [21] are based on a particular 2D extension of the
Su-Schrieffer-Heeger (SSH) model [25]. Unlike other 2D
SSH models [26,27], SSH chains with alternating intersite
hopping strengths are shifted and stacked in the direction
perpendicular to the chains. With only the nearest neigh-
bor hoppings, the 2D system preserves the chiral sym-
metry of the one-dimensional (1D) SSH system. With the
constant interchain coupling weaker than the average
intrachain coupling, a gap opens between two bulk bands
and the topology of the system is characterized by the
winding number, which depends on the direction of
edges or boundaries. The bulk-boundary correspondence
predicts flat zero energy edge or boundary bands of
bipartite states for the chiral 2D SSH system, similar to
the 1D SSH system.

One of the 2D spinner systems and its schematic diagram
are shown in Figs. 1(a) and 1(b). With magnets attached to
the 0°, 60°, 180°, and 240° direction arms and the spinners
arranged in quasitriangular lattices, the systems are equiv-
alent to the electronic systems of quasisquare lattices in
Ref. [21] with hoppings in the 0°, 90°, 180°, and 270°
directions. The systems are assembled with the edges in
the 0° and 120° directions, equivalent to the 0° and 135°
directions for the quasisquare systems. The spinners are
indexed as (ny,n,) withn; =1,...,Nyandn, = 1,...,N,
[Fig. 1(b)]. The SSH chains run along the 0° direction with
alternating intrachain couplings, represented by the red and
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FIG. 1. (a) 6 x 6 spinner system, where rotatable spinners and
magnetically coupled arms are highlighted and fixed spinners and
arms without magnets are shaded. (b) Illustration of the spinner
system pictured in (a), where the orange (gray) balls represent
rotatable (fixed) spinners. The purple ellipse represents a unit cell.
The blue (red) lines indicate the couplings within (between) the
unit cells within the 1D SSH chains along the 0° direction. The
green lines indicate the constant interchain coupling, which is
smaller than the average intrachain coupling. Coordinates
(ny,n,) describe the position of the spinners.

the blue lines in Fig. 1(b). The chains are coupled along the
60° direction with a constant interchain coupling, repre-
sented by the green lines. A unit cell is marked in purple. If
the interchain coupling is weaker than the average intra-
chain coupling, and the interaction within the unit cell is
weaker [stronger] than the interaction between the unit
cells within the same chain, the system becomes a
topological [nontopological] insulator (see Supplemental
Material [28].). For chiral symmetry, fixed spinners with
necessary interactions are placed around the edges, as
shown in Figs. 1(a) and 1(b). One of the spinners is driven
by the interaction between a magnet on either 120° or 300°
direction arm and a magnet on the actuator. The voltage
from an attached accelerometer divided by the square of
the frequency is used as a quantity proportional to the
oscillation amplitude of the spinner. Slow motion movies
are analyzed for the pattern of modes [22,23].

With parameters from Ref. [22], the spectra are calcu-
lated to decide which spinners to actuate and measure, so
that the bulk and edge bandwidths are well represented.
Actuating and measuring at the (N, 2) spinner [(N; — 1, 1)
spinner] gives the spectrum that represents the edge
[bulk] bandwidth well for the topological systems. By
choosing the intermagnet distances of 5.0, 8.0, and 9.0 mm
for red, blue, and green lines, respectively, in Fig. 1(b),
we realize topological systems with the winding numbers
v(120°) =1, v(0°) =0 and topological edges in 120°
direction, and by choosing 8.0, 5.0, and 9.0 mm, non-
topological with ©(120°) = v(0°) = 0 [21]. The theoretical
analysis for the N; x N, topological systems with open
boundary conditions (see Supplemental Material [28])
shows that the edge states decay rapidly within a few
spinner-to-spinner distances in the n; direction and the
edge bandwidths for the systems with N, = 6 are within
5%—-15%(0.12-0.03 Hz) from those for the large N, limit.
Thus, small size systems from 4 x 6 to 12 x 6 are sufficient
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FIG. 2. Results for the topological systems. (a)—(e) Solid lines:
Bulk mode spectra experimentally obtained by actuating and
measuring at the (N| — 1, 1) spinner for the N x 6 systems with
N; =4, 6, 8 10, and 12, respectively. Dotted lines: Spectra
obtained with the (N;/2+1,5) spinner to reveal the top
(bottom) of the upper (lower) bulk bands better. The blue areas
indicate the lower and upper bulk bands. (f)—(j) Edge mode
spectra experimentally obtained with the (N, 2) spinner for the
same systems as in (a)—(e), respectively. Red areas indicate the
edge bands. A red arrow in (a) [blue arrows in (f)] indicates edge
(bulk) modes appearing in the bulk (edge) spectra due to the short
edge-to-edge distance. (k) Experimental and theoretical bulk and
edge bandwidths versus the system size N; X N,. (1) Logarithm
of experimental edge bandwidth, In (Af), versus N, and fitting
to the theory, resulting in the localization length at k, =0,
&y~ 3.2, close to the theory value of 3.1 [24,28,29].

to reveal the trend in the edge bandwidth versus N, the
distance between the topological edges.

Figure 2 shows the results for the topological systems.
Spectra obtained with the (N; —1,1) spinner for the
N, x 6 systems with N; =4, 6, 8, 10, and 12 are shown
in solid lines in Figs. 2(a)-2(e), respectively, each of which
reveals upper and lower bulk bands, marked by blue areas,
and a gap in between. To reveal the modes at the top
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[bottom] of the upper [lower] bulk bands better, we also
actuate and measure at (N /2 + 1, 5) spinners, as shown in
dotted lines in Figs. 2(a)-2(e). Figures 2(f)-2(j) show
spectra obtained with the (N;,2) spinner for the same
systems as in Figs. 2(a)-2(e), respectively. Edge bands,
marked by red areas, appear within the gaps of the bulk
spectra. Figures 2(a)-2(j) show systematic changes in the
bulk and edge bandwidths, which are plotted as solid
symbols in Fig. 2(k), along with the theoretical results
shown as open symbols. The experimental results are in
agreement with the theory and show both upper and lower
bulk bandwidths increase as the edge-to-edge distance N,
increases due to the finite size effect, and start to saturate
around N ~ 8. In contrast, the edge bandwidth from the
experiments narrows rapidly as the edge-to-edge distance
increases, consistent with the numerical results. Theoretical
analysis for systems with a periodic boundary condition in
the n, direction reveals that the edge states with the wave
vector k, have bipartite patterns of zero amplitudes and
exponentially decaying nonzero amplitudes with localiza-
tion length &(k,); see Supplemental Material [28,29]. This
leads to the edge bandwidth Af, = CN,e~"1/% in the large
N, /& limit, where C is a constant and &, = &(k, = 0) [28].

Since N,/&; is not large for N; =4 and the theoretical

g‘eory = 3.1, the experimental data for N; =6, 8, 10,

and 12 are used to decide &, experimentally as shown
in Fig. 2(1). The line represents In (Afy) =InC + InN; —
N./&, and shows agreement with experimental data with

&y~ 3.2, close to fglcory. The results in Figs. 2(k) and 2(1)
indicate that the edge band would be completely flat, as the
edge-to-edge distance N increases further, confirming the
predictions from Ref. [21].

By exchanging the strong and the weak intrachain
couplings, the topological systems become nontopological.
The experimental results for 6 x 6 topological and non-
topological systems are shown in Figs. 3(a) and 3(b). For
the topological system, the edge band is prominent in the
spectra obtained from the (6,2) and (6,1) spinners, located
within the gap in the spectrum from the (5,1) spinner. For
the nontopological system, the edge band disappears from
the gap, leaving only the bulk bands. The results show the
difference between the topological and nontopological
systems and the topological origin of the edge states [21].

o
)

(a) 6x6 topological o) (b) 6x6 nontopological
— 62

—(6,1)

—(5.1)
—(6.2)

20 30 10 20 30
Frequency (Hz)

o
w

o

Normalized
Amplitude (mV/Hz?)

-
o

FIG. 3. Spectra experimentally obtained by actuating and
measuring at the (5,1), (6,2), and (6,1) spinners for the 6 x 6
(a) topological and (b) nontopological systems. The edge band is
present in the bulk band gap in (a), but absent in (b).

For topological systems, the presence of the edge modes
depends on the direction of the open edges, determined
by the winding numbers v(120°) = 1 and v(0°) = 0. With
v = 0 outside the open edges, the edge modes should occur
only along the 120° direction edges, not along the 0°
direction. To test these predictions, we build a topological
system with the same number of spinners along the 0°
and 120° directions, and actuate the (N, 1) spinner, which
belongs to both 0° and 120° direction edges, at a frequency
within the edge band to see along which direction the edge
mode appears. We choose a small 4 x 4 system, so that all
the spinners at the topological edges show large oscillations
and bulk modes could be excited by actuating the same
spinner at a bulk mode frequency. The oscillation pattern at
an edge mode frequency is displayed in Fig. 4(a), in which
the colors approximately represent the oscillation ampli-
tudes of spinners, estimated from the slow motion movie
by eyes; see Supplemental Material for the movie [28].
The actuated spinners are marked by stars in Fig. 4. The
edge mode appears along the edges in the 120° direction,
not in the 0° direction, consistent with the topological
analysis. It confirms that the bands in the bulk band gap
in Figs. 2(f)-2(j), and 3(a) are edge bands. We excite bulk
modes by actuating the (4,1) spinner at a bulk band
frequency, as shown in Fig. 4(b), where the oscillations
are concentrated on the central two columns along the 120°
direction (for movie, see Ref. [28]), confirming the bands
above and below the gap in Figs. 2(a)-2(e) and 3(a) are the
bulk bands. As the edge-to-edge distance N, increases and
the edge band becomes flatter, the excitation at the edges is
more localized along the edges. To verify this, the N x 4
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FIG. 4. (a)—(d) Patterns of modes. Colors represent the oscil-

lation amplitudes of the spinners, estimated from slow motion
movies by eyes. Stars mark actuated spinners. In (a),[(b)], an edge
[bulk] mode is revealed at 23.6 Hz [19.5 Hz] in the edge [bulk]
band for the 4 x 4 topological system. In (c),[(d)], an edge mode
is revealed at 23.7 Hz [24.5 Hz] for the 6 x 4 [8 x 4] topological
system. See Supplemental Material for movies [28]. (e) Normal-
ized oscillation amplitude of the (n;,n,) spinner versus its
distance from the right edge, 12 — n;, when a single (12,n,)
spinner (n, = 1, ..., 6) at the right edge is actuated for the 12 x 6
topological system. (f) Symbols: semilogarithmic plot of (e) for
even 12 —n;. Lines: linear fittings, leading to an average
localization length £ = 1.5 + 0.3, consistent with the theoretical
range of £(k), 0.9 ~3.1.
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systems with N; = 6 and 8 are studied by actuating (N1, 1)
spinner at edge mode frequencies. The results shown in
Figs. 4(c) and 4(d) (for movies, see Ref. [28]) reveal that
edge modes decay much faster along the edges compared to
the 4 x 4 system in Fig. 4(a), consistent with the enhanced
localization as the edge band becomes narrower. For the
8 x 4 system shown in Fig. 4(d), only (1,4) spinner, other
than the actuated (8,1) spinner, shows a large oscillation,
while the oscillations of all other spinners are much smaller,
which is the analog of the fractional charge state [24].
As mentioned briefly, theoretical analysis leads to the
amplitude of the right edge mode with the wave vector
ky vanishes for odd n;, and decays as By (nj.n,) =

Be~Wi=m)/<k2) for even n;, where £(k,) is the localization
length [28,29]. To verify this for the 12 x 6 system, we
actuate a single (12,n,) spinner (n, =1,...,6) at the
central frequency of the edge band and measure the
amplitudes for the (n;,n,) spinners with 12 —n; =
0,...,7 by accelerometers. The results for each case of
n, are shown in Fig. 4(e), which reveals that the right edge
modes have much smaller amplitude for odd n; than for
even n;, consistent with the theory. Semilogarithmic plot
for the data with even n; in Fig. 4(f) shows exponentially
decaying amplitudes, with the average localization length
£ =1.5£0.3, which is within the range of the theoretical
E(ky) from 0.9 at k, = +x to 3.1 at k, = 0, reflecting
that the excited edge states are combinations of edge states
with different k,.

Inhomogeneous systems could host flat bands at the
antiphase or twin boundaries inside the bulk [21,30]. The
antiphase boundary of the 1D SSH chain hosts the zero
energy state in the gap, because it separates domains with
different winding numbers [24,31]. To force the system to
have an antiphase boundary but no edges, a ring-shaped
1D SSH system with an odd number (15) of spinners is
built, as shown in Fig. 5(a), where the red and the blue
lines represent the interactions between magnets sepa-
rated by 5.0 and 8.0 mm, respectively. A fixed spinner,
shown as a gray ball, is placed just outside the seam for
the chiral symmetry. By actuating and measuring at the
spinner No. 1 (No. 2), the antiphase boundary seam mode
[bulk mode] is revealed in the spectrum, as shown in the
red (blue) line in Fig. 5(b). The seam mode peak is
present in the gap, consistent with the theory [21,24].
The slow motion movie of the seam mode [28] reveals an
oscillation of every other spinners in both directions from
the spinner No. 1 with decaying amplitudes, consistent
with the theory [24,32] and experiments for other 1D SSH
metamaterials [31,33].

We theoretically consider tubular SSH systems with odd
numbers of the spinners in the azimuthal direction, so that
the antiphase boundary seams are forced to be present as
shown in Fig. 5(c). While this seam is locally equivalent to
the 120° antiphase boundary in Ref. [21], the odd number
of spinners in the azimuthal direction prevents us from
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FIG. 5. (a) Illustration of the SSH ring with fifteen spinners and

a seam experimentally studied. See the caption for Fig. 1(b). The
purple line represents the extra coupling at a magnet distance of
6.5 mm for the chiral symmetry. (b) Red (blue) line: Edge (bulk)
mode spectrum experimentally obtained by actuating and meas-
uring at the spinner No. 1 (No. 2) for the SSH ring shown in (a).
See Supplemental Material for the movie of a seam mode [28].
(c) Tubular model system with thirteen spinners in the azimuthal
direction and an antiphase boundary seam, obtained by joining
the (1,n,) and (13,n, + 1) spinners of a planar system like
Fig. 1(b) with N; = 13. The gray balls represent fixed spinners
interacting with the spinners at the seam. The magnification
shows the antiphase boundary seam with the weak azimuthal
couplings on both sides (the blue lines), and the couplings with
the fixed spinners (the purple lines). (d) Band structure for the
tubular system in (c). The blue lines represent the bulk bands and
the red line the flat antiphase boundary seam band.

defining a two-spinner unit cell or the topological winding
number globally, unlike the systems in Ref. [21]. With a
periodic boundary condition along the tube axis, the
frequency versus k, is calculated and shown in Fig. 5(d),
revealing an almost flat seam band (red line) inside the gap
between the bulk bands (blue lines). The flat band found in
this system, where the winding number is undefinable,
demonstrates the robustness of the flat bands.

The experimental results for the spinner systems have
implications for metamaterials experimentally shown to
realize the 1D SSH model. It includes photonic [26,33-37],
electronic [38], acoustic [31], plasmonic [39], circuitry
[40-44], optical lattice [45], and microwave [46] meta-
materials. Realization of the chiral 2D SSH Hamiltonian
in photonic crystals [47] could lead to photons guided
slowly along designed paths for pulse buffering [6,7].
In electronic metamaterials, the effects of correlations
would be enhanced for flat bands, resulting in strongly
correlated phenomena [48]. Dynamic tunability in optical
lattices may be used to switch the system between
topological and nontopological phases [7]. Extension to
3D systems would reveal the effects of polarization [6,7].

In summary, we have experimentally demonstrated the
presence of the flat bands of the topological origin localized
at open edges and antiphase boundary seams in mechanical
metamaterials. The results presented here could apply to
other metamaterials, potentially leading to novel phenom-
ena and device applications.
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