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Turbulent fluid flows exhibit a complex small-scale structure with frequently occurring extreme velocity
gradients. Particles probing such swirling and straining regions respond with an intricate shape-dependent
orientational dynamics, which sensitively depends on the particle history. Here, we systematically develop
a reduced-order model for the small-scale dynamics of turbulence, which captures the velocity gradient
statistics along particle paths. An analysis of the resulting stochastic dynamical system allows pinpointing
the emergence of non-Gaussian statistics and nontrivial temporal correlations of vorticity and strain, as
previously reported from experiments and simulations. Based on these insights, we use our model to predict
the orientational statistics of anisotropic particles in turbulence, enabling a host of modeling applications
for complex particulate flows.
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Turbulent flows show complex dynamics with a wide
range of dynamically active scales [1–3], which play an
important role for the dispersal of pollutants and aerosols
in the atmosphere [4,5], the transport of microorganisms
in the ocean [6–10], as well as the mixing of reactants in
turbulent combustion [11,12]. The smallest turbulent
scales, which are essentially independent of the boundaries
and anisotropies of the large-scale flow [1], have a pro-
found impact on the dynamics and collision rates of small
suspended particles, like plankton in the ocean [6–10], as
well as droplets and ice crystals in clouds [13–16]. Even in
the simplest case of very small, neutrally buoyant particles,
which passively follow the velocity field, highly nontrivial
shape-dependent rotational motion has been observed
[17–22]. Theoretically, this intricate dynamics is not well
understood.
The spinning and tumbling of particles immersed in a

turbulent flow are determined by the complex interplay of
particle shape and the small-scale structure of the turbulent
flow field, as encoded in the gradients of the velocity field
Aij ¼ ∂ui=∂xj [23]. Because particle rotations are very
sensitive to various small-scale features of turbulence such
as non-Gaussian fluctuations, the local flow topology and,
most importantly, the temporal correlation of strain and
vorticity along Lagrangian trajectories, capturing this

complex motion with theoretically insightful reduced-order
models for turbulence so far remained elusive. The chal-
lenges in predicting these aspects of turbulent velocity
gradients ultimately arise from the nonlinear, nonlocal,
and dissipative dynamics of the governing Navier-Stokes
equations.
Over the past years, a variety of reduced-order models

for the velocity gradient statistics based on stochastic
differential equations (SDEs) has been developed [23–29].
In these models, the effects of nonlocal pressure and
viscous diffusion result in unclosed terms, to which diverse
closure techniques have been applied. Closure theories
range from models based on prescribed log-normal dis-
sipation rates [24], the coarse-grained velocity gradient as
perceived by a tetrad of tracer particles [25,26], or the
deformation of fluid elements [27] to functional closures
based on Gaussian random fields [28], as well as combi-
nations of these approaches [29]. The most advanced
reduced-order SDE models successfully reproduce many
of the characteristic geometric and statistical properties
of the turbulent small scales [28–32]. However, all current
models struggle to capture important aspects of the
temporal correlation of strain rate and rotation rate, which,
in particular, leads to poor predictions for the orientational
dynamics of particles immersed in turbulent flows.
Here, we develop a minimal model for the velocity

gradients in turbulence, which enables profound theoretical
insights. Starting from an exact statistical evolution equa-
tion, we systematically constrain its structure based on
tensor function representation theory. By using an ensem-
ble approach, we construct a physically consistent model
that complies with important homogeneity constraints of
turbulent fields. Based on an analysis of the associated

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Open access publication funded by the Max Planck
Society.

PHYSICAL REVIEW LETTERS 125, 224501 (2020)

0031-9007=20=125(22)=224501(6) 224501-1 Published by the American Physical Society

https://orcid.org/0000-0002-5594-4872
https://orcid.org/0000-0002-1423-8285
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.125.224501&domain=pdf&date_stamp=2020-11-25
https://doi.org/10.1103/PhysRevLett.125.224501
https://doi.org/10.1103/PhysRevLett.125.224501
https://doi.org/10.1103/PhysRevLett.125.224501
https://doi.org/10.1103/PhysRevLett.125.224501
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Fokker-Planck equation, we establish a clear interpretation
of its nonlinear dynamics. Specifically, we identify the
dynamical mechanisms which control the degree of non-
Gaussianity and temporal correlations of vorticity and
strain. We test our predictions against high-resolution
simulation results of fully developed turbulence and show
that our model captures the temporal autocorrelations of
rotation rate and strain rate. Coupled to the equations for
the orientation dynamics of ellipsoidal particles, our model,
furthermore, accurately reproduces the tumbling and spin-
ning rates of particles in turbulent flows.
The evolution equation for velocity gradients is obtained

by taking the gradient of the Navier-Stokes equation. Along
a tracer particle, the velocity gradient changes according to
the local self-amplification of velocity gradients, nonlocal
pressure contributions, viscous diffusion, and external
forces [23]. The foundation of our model is an exact,
unclosed SDE for the one-point statistics of homogeneous
isotropic turbulence, which statistically captures these
various contributions to the dynamics. Using stochastic
calculus, one can derive this SDE from the Navier-Stokes
equations [28]. It takes the form

dA ¼ ð−fA2 − heHjAi þ hνΔAjAiÞdtþ dF: ð1Þ

Here, A can be interpreted as the stochastic process
corresponding to the velocity gradient field at the position
of a fluid particle. The tilde denotes the traceless part of

the tensor, e.g., fA2 ¼ ½A2 − 1
3
TrðA2ÞI�. The first term on the

right-hand side, which appears in closed form, captures
the nonlinear local self-amplification of the velocity
gradient. It includes the local isotropic part of the pressure
Hessian Hij ¼ ð∂2pÞ=ð∂xi∂xjÞ, which is obtained from the
pressure Poisson equation Δp ¼ TrðHÞ ¼ −TrðA2Þ [33].
Unclosed terms, which contain information beyond the local
single-point statistics, appear in the form of conditional
averages, i.e., as averaged fields conditional on a given
configuration of the velocity gradient at the same position.
The conditional average heHjAi contains information about
the mean nonlocal, deviatoric part of the pressure Hessian
given a velocity gradient configuration A, which a priori
depends on the full flow field due to the pressure Poisson
equation. The conditional Laplacian hνΔAjAi encodes
viscous effects in the velocity gradient tensor evolution.
The term dF is a Gaussian, temporally delta-correlated
tensorial forcing, which is consistent with isotropy, homo-
geneity, and incompressibility TrðAÞ ¼ 0. It naturally arises
when considering stochastically forced turbulence.
To close the conditional mean pressure Hessian and the

conditional mean Laplacian terms, we express them as
isotropic tensor-valued functions of the symmetric and
antisymmetric part of the velocity gradient, the strain rate S,
and rotation rate W, respectively. Using tensor function
representation theory, one can derive a complete and

irreducible representation in terms of a small number of
tensorial terms [34–39]. The individual tensorial terms are
comprised of combinations of S and W, with coefficient
functions that depend on isotropic invariants of S and W.
The conditional mean traceless, symmetric pressure
Hessian, for example, can be expressed as a linear
combination of seven tensorial terms with appropriate
coefficient functions (cf. Supplemental Material [40],
Sec. I). Previous studies [28,47] showed that the most
important features of the dynamics can already be captured
by retaining terms up to the lowest possible order (i.e., up to
second order in the pressure Hessian and up to first order
in the viscous term) with constant coefficients. To enable
analytical insights, we therefore truncate the general
tensorial expansion and consider the closure

heHjAi ¼ α eS2 þ βfW2 þ γðSW −WSÞ þ δS; ð2Þ

hνΔAjAi ¼ ξA: ð3Þ

This expression still contains five scalar parameters, which
need to be further constrained. A general limitation of
single-point closures is that they lack the possibility to
include physical constraints that depend on information
from the full field. For homogeneous turbulence, for
example, the velocity gradient field fulfills the Betchov
constraints [48] hTrðA2Þi ¼ 0 and hTrðA3Þi ¼ 0, which
encode the balance of enstrophy and dissipation, as well as
of their production. So far, velocity gradient models need
careful calibration to fulfill these constraints [29]. An
intriguing alternative to achieve a model that is physically
consistent with homogeneous turbulence is to consider an
ensemble of Lagrangian fluid elements that sample the full
velocity gradient field. We then achieve consistency with
the Betchov constraints by identifying spatial averages over
the field with ensemble averages over the Lagrangian fluid
elements. This can be used to derive analytical expressions
from (1) for two of the parameters, which allows us to
constrain our closure (2) and (3). One additional parameter
can be fixed by nondimensionalizing the velocity gradient
model with the Kolmogorov timescale τη, which implies
hTrðS2Þi ¼ 1=2. We choose to constrain the parameters β,
δ, and ξ and obtain them as functions of ensemble-averaged
scalar invariants of the velocity gradient and the remaining
parameters. Their explicit form and derivation is given
in the Supplemental Material, Sec. II [40]. Thereby, the
parameter space is reduced by three dimensions, and
Betchov’s homogeneity constraints are fulfilled by design.
Besides the forcing amplitude, which we fix for the
following considerations (see Supplemental Material [40],
Sec. III for the impact of the forcing amplitude), this leaves
two free parameters: α and γ.
The impact of these free parameters on the nonlinear

dynamics of the velocity gradient model can be revealed
from the Fokker-Planck equation (FPE) corresponding
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to (1), which governs the evolution of the full probability
density function (PDF) fðA; tÞ of the velocity gradient
tensor (implied summation),

∂
∂t f ¼ −

∂
∂Aij

½ðNij þ LijÞf� þ
1

2
Qijklð0Þ

∂
∂Aik

∂
∂Ajl

f: ð4Þ

Here, Qijklð0Þ denotes the forcing covariance, and the
nonlinear and linear drift terms are given by

N¼−ð1þαÞ eS2−ð1þβÞfW2−ð1þγÞSW−ð1−γÞWS; ð5Þ

L ¼ −δSþ ξA: ð6Þ

The parameter α controls the strength of the strain self-
amplification in the velocity gradient dynamics. For a
vanishing self-amplification (α ¼ −1) and parameters
determined such that the Betchov constraints are fulfilled,
we find that (4) has an exact Gaussian solution
(cf. Supplemental Material [40], Sec. IV.1). Remarkably,
even in this case, the FPE contains nonlinear drift terms.
We demonstrate below that the strength of strain self-
amplification controls departures from Gaussianity as well
as important features of the small-scale topology of the
predicted velocity gradient statistics. Further analysis of the
FPE shows that the single-time statistics is independent of
the parameter γ for isotropic turbulence. In this case, the
velocity gradient PDF is a function of the tensor invariants
only, and one can readily calculate that ∂½γðSikWkj −
WikSkjÞfðAÞ�=∂Aij ¼ 0 (cf. Supplemental Material [40],
Sec. IV.2). This result is related to a recently reported gauge
symmetry of the pressure Hessian [49]. However, we show
below that, for the two-time statistics, and, in particular,
the autocorrelations of vorticity and strain, the γ-term turns
out to be crucial.

To determine appropriate values for the free parameters,
we perform parameter scans and compare our model results
with velocity gradient statistics obtained from direct
numerical simulations (DNS) of the Navier-Stokes equa-
tion. We analyzed a simulation of homogeneous isotropic
turbulence with 20483 grid points on a periodic domain at a
Taylor-scale Reynolds number of Rλ ≈ 509 with a small-
scale resolution of kmaxη ≈ 1.5 (kmax is the largest resolved
wave number, and η is the Kolmogorov scale). For the
data analysis, 25 snapshots spanning ca. four integral
timescales are taken into account. For the para-
meter scans, we numerically solve (1) using the Euler-
Maruyama method [50] with a time step of Δt ¼ 0.0002.
Convergence checks with varying time steps were also
performed. For all simulations shown here, we have
integrated an ensemble of 105 Gaussian initial conditions
for 5 × 106 time steps, which corresponds to 1000τη in
physical time, after an initial transient of 100τη
(cf. Supplemental Material [40], Sec. V). Initial simulations
of (1) revealed the occurrence of rare rogue trajectories
exploring far-out regions of the phase space, which leads to
nonconvergent statistics and may introduce numerical
instabilities in the determination of our parameters. We
identified the second-order truncation of the unclosed terms
as the origin of this shortcoming, which can be remedied
by including a nonlinear damping term (cf. Supplemental
Material [40], Sec. VI). The auxiliary term ϵA, which is
added to (3), is constructed to damp trajectories that diverge
far from the ensemble mean and is negligibly small for the
major, dynamically most relevant part of phase space; we
set ϵ ¼ −10−8f½TrðW2Þ þ 1=2�4 þ ½TrðS2Þ − 1=2�4g.
Figure 1(a) illustrates how the strength of strain self-

amplification controls the departure from Gaussianity of
the predicted velocity gradient statistics. As α deviates from
−1, the single-component PDFs become non-Gaussian
with increasingly heavy tails. For α ¼ −0.6, the

(a) (b) (c)

FIG. 1. Controlling single-time statistics with the strength of the strain self-amplification α. (a) α controls the departure from
Gaussianity of the model statistics: Standardized PDFs of the longitudinal (A11) and transverse (A12) velocity gradient components for
different values of α. (b) α determines the probability of different flow topologies: Joint PDF of the standardized isotropic invariants
R̂ ¼ −TrðA3Þ=½3hTrðS2Þi3=2� and Q̂ ¼ −TrðA2Þ=½2hTrðS2Þi� for different values of α. DNS results in lower right panel. The
Vieillefosse line is indicated in gray. (c) Alignment of principal strain axes and vorticity increases with strain self-amplification: PDFs of
the cosine of the angle between the vorticity vector and the three eigenvectors of the strain-rate tensor for the same values of α as in (a).
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standardized PDFs of the velocity gradient components of
our model agree well with DNS results within 7 standard
deviations [cf. Fig. 1(a)]. The match is particularly good for
the transverse components, for which our model captures
the vanishing skewness and closely matches the DNS
kurtosis of hA4

12i=hA2
12i2 ≈ 14.34 to within 1% (model:

14.32). For the longitudinal components, our model under-
predicts the skewness hA3

11i=hA2
11i3=2 (model: −0.42; DNS:

−0.61), consistent with other recent models [29], and
slightly overpredicts the kurtosis (model: 11.46; DNS: 9.2).
Furthermore, the strain self-amplification determines the

probability of different flow topologies, as encoded in the
invariants Q ¼ −TrðA2Þ=2 and R ¼ −TrðA3Þ=3, which
capture the competition between enstrophy and dissipation,
as well as between their production. In the R −Q plane, the
Vieillefosse line, i.e., the zero crossing of the discriminant
of A given by ð27=4ÞR2 þQ3 ¼ 0, plays an important role,
as it separates the upper region with complex eigenvalues
of A from the lower region with purely real eigenvalues.
Figure 1(b) shows the joint PDF of the standardized
invariants Q̂ and R̂ for different values of α and from
DNS. As α is tuned from −1.3 to −0.6, the joint PDF first
extends along the left part of the Vieillefosse line, becomes
symmetric for Gaussian statistics (α ¼ −1), and finally
extends along the right part of the Vieillefosse line. This
corresponds to a shift of probability from flow regions with
two compressive principal strain directions to regions with
two extensional principal strain directions [51]. For
α ¼ −0.6, our model qualitatively captures the shape of
the PDF as observed in DNS (lower right panel) and
experiments [23], although the probability of velocity
gradient configurations along the right part of the
Vieillefosse line is underestimated. Nonetheless, since
our model inherently fulfills the Betchov constraints,
the mean of our model R̂ − Q̂ PDF lies accurately at
hR̂i ¼ hQ̂i ¼ 0 for all values of α.
Strain self-amplification also impacts another important

aspect of the small-scale topology: the alignment between
the vorticity vector and the principal strain-rate axes.
Figure 1(c) shows the PDFs of the cosine of the angle
between the vorticity vector and the three eigenvectors of
the strain-rate tensor. Our model (with α ¼ −0.6) accu-
rately captures the alignment of the vorticity with all three
eigenvectors. In particular, it captures the well-known
preferential alignment of the vorticity with the eigenvector
to the intermediate eigenvalue [23,52,53]. The alignment
strength decreases with decreasing self-amplification, and
for α ¼ −1, when the strain self-amplification vanishes and
the model statistics are Gaussian, as expected, no prefer-
ential alignment is observed.
While we showed analytically that the γ-term has no

effect on the single-time statistics, it determines temporal
correlations of the velocity gradients. This can be
rationalized from the fact that γðSW −WSÞ essentially
rotates the strain eigenframe about the axis given by the

vorticity vector with a rotation rate proportional to the
vorticity magnitude [28]. This directly impacts the
temporal correlation of velocity gradients and allows one
to precisely control them. Figure 2(a) compares
temporal correlations of velocity gradients hCijðtÞ
Cijðtþ τÞi=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hCmnðtÞ2ihCpqðtþ τÞ2i

q
(implied summa-

tion) of our model to DNS results, where Cij ¼ Sij or
Wij. For the DNS results, the simulation was continued
with 106 Lagrangian tracer particles, and we collected data
from the statistically stationary state. For γ ¼ −1.1, our
model matches the vorticity autocorrelation very well.
Importantly, it also captures the previously observed [54]
shorter correlation time of the rate of strain compared to the
rate of rotation, although differences occur in the shape of
the correlation function. These results show, in particular,
that the rotation of the strain eigenframe as encoded by
the γ-term is responsible for a decrease of the correlation
time of the strain rate and an increase of the rotation-rate
correlation time.
Having established a model that captures the different

temporal correlations of strain and vorticity along with the
central non-Gaussian features of small-scale turbulence,
we can use it to predict the tumbling and spinning rates of
Lagrangian particles. To this end, we couple our model to
Jeffery’s equation [55], which describes the orientational

(a)

(b)

FIG. 2. Controlling temporal correlations and particle rotation
rates with γ. (a) Temporal autocorrelation of rotation rate (blue)
and strain rate (red) for different values of γ and DNS. (b) Mean
square rotation rates of anisotropic particles as a function of the
particles’ aspect ratio as predicted by our model and DNS,
nondimensionalized by the Kolmogorov timescale. The tumbling
rates (green) and spinning rates (blue) are plotted for three
different values of γ corresponding to (a). The total rotation rate
(sum of spinning and tumbling) is plotted for γ ¼ −1.1 in violet.
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dynamics of axisymmetric ellipsoidal particles (implied
summation),

d
dt

pi ¼ Wijpj þ
λ2 − 1

λ2 þ 1
ðSijpj − pipkSklplÞ: ð7Þ

Here, the unit vector p denotes a particle’s symmetry axis,
and λ is the particle’s aspect ratio, i.e., the ratio of the length
along the symmetry axis to the length perpendicular to it.
The rotation of an axisymmetric particle can be decom-
posed into spinning (rotation around the symmetry axis)
and tumbling (rotations around axes perpendicular to the
symmetry axis) [17], with the squared spinning rate
ð1
2
ω · pÞ2, where ω is the vorticity, and the squared

tumbling rate _pi _pi. In Fig. 2(b), the nondimensionalized
mean square tumbling and spinning rates as predicted by
our model are shown for different values of γ as a function
of the particles’ aspect ratio. Figure 2(b) shows that
especially the tumbling rates of disklike particles increase
when the temporal correlations are modified by increasing
the magnitude of the coefficient γ. When our model
exhibits the most realistic correlation times, i.e., for
γ ¼ −1.1, the particle rotation rates predicted by our model
agree very well with the ones observed in our DNS and
literature [17,20] for the full range of particle shapes. In
particular, our model predicts the high tumbling rates of
disklike particles observed in DNS and experiments. The
comparison of the results for different values of γ in
Figs. 2(a) and 2(b) indicates that the realistic auto-
correlation times of our model are crucial for an accurate
prediction of tumbling rates of suspended particles.
In summary, we have analyzed the dynamics and

statistics of velocity gradients in turbulence in the frame-
work of a minimal, physically consistent reduced-order
model. Our combined analytical and computational
analysis showed that strain self-amplification controls the
non-Gaussianity as well as the small-scale topology of
the velocity gradient dynamics and identified the rotation of
the strain eigenvectors by the vorticity as the major factor in
determining the temporal correlations of velocity gradients.
As a result, we obtained a reduced-order model for the
small scales of turbulence that captures the different
correlation times of strain and vorticity in turbulence.
We showed that the reduced-order model can be used to
accurately predict the orientational statistics of suspended
anisotropic particles, enabling a host of modeling applica-
tions for complex particulate flows.
Based on tensor function representation theory and the

systematic implementation of physical constraints, our
closure approach explicitly uncovers the general tensorial
structure of the unclosed terms, which also provides a
firm foundation for future advancements. For example,
we expect that the inclusion of higher-order terms and
coefficient functions that depend on velocity gradient
tensor invariants will lead to further quantitative

improvement. Machine learning approaches [56] could
turn out to be instrumental in achieving such improved
parameterizations.
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