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In the theory of radiative heat exchanges between two closely spaced bodies introduced by Polder and
van Hove, no interplay between the heat carriers inside the materials and the photons crossing the
separation gap is assumed. Here we release this constraint by developing a general theory to describe the
conduction-radiation coupling between two solids of arbitrary size separated by a subwavelength
separation gap. We show that, as a result of the temperature profile induced by the coupling with
conduction, the radiative heat flux exchanged between two parallel slabs at nanometric distances can be
orders of magnitude smaller than the one predicted by the conventional theory. These results could have
important implications in the fields of nanoscale thermal management, near-field solid-state cooling, and
nanoscale energy conversion.
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Understanding the radiative heat transfer between two
bodies at different temperatures is a very old problem in
physics. At long separation distance, where energy
exchange results exclusively from propagative photons,
this transfer is well described by the radiometry theory
introduced by Schuster [1], which led to the blackbody
theory of Planck [2] at the beginning of the 20th century.
On the other hand, at subwavelength distances (i.e., in the
near-field regime) the situation radically changes. Indeed,
at this scale evanescent photons become the main contrib-
utors to the heat transfer by tunneling effect through the
separation gap [3]. The basic foundations of heat transfer
modeling at this scale were laid in the 1970s with the work
of Polder and van Hove (PvH) [4], based on Rytov’s theory
of fluctuational electrodynamics [5]. In this semiclassical
theory, the Poynting flux is calculated by summing up all
the contributions generated by the random thermally
activated electric currents inside each body. This leads to
the prediction of a dramatic amplification of radiative heat
flux in the near field (with respect to the far field), which
has been confirmed experimentally down to the nanometer
range of distances considered in this work [6,7].
In the calculation of the net power exchanged between

two solids held at uniform temperatures, the PvH theory
neglects the coupling between the thermal photons which
tunnel through the separation gap and the acoustic phonons
inside each solid. Nevertheless, thermal photons are trans-
ported throughout each body and they dissipate their
energy unevenly through them. Consequently, the tempera-
ture field within each body is generally not uniform and its
spatiotemporal variation is driven by the conduction-
radiation coupling between the two bodies. A first attempt
to describe this coupling was proposed in 2016 [8].
However, this phenomenological approach was limited

to bodies of characteristic length much larger than the
mean free path of heat carriers, so that no ballistic or
partially ballistic transport could be taken into account.
In this Letter we introduce a general and self-consistent

theoretical framework to describe the heat transfer between
two solids of arbitrary size by taking into account the
interplay between conduction and radiation. The essence of
this approach is based on the combination of Boltzmann’s
equation to deal with the transport of heat carriers inside the
solids (valid for any heat-transport regime) and fluctua-
tional electrodynamics to calculate the radiative power
locally dissipated in each body. Our theory is limited to
systems in the thermodynamic limit where the temperature
is uniquely defined and where the local thermal equilibrium
is reached. Moreover, the relative local temperature
gradient is assumed to be small compared to the correlation
length of the electromagnetic field inside the bodies [9]. We
also stress that we do not address here the problem of the
transition between radiation and conduction, considered in
some recent works [10,11].
To start, let us consider two bodies as sketched in Fig. 1

assumed to be in partial contact with two thermostats and
which are separated from each other by a subwavelength
gap. We assume the thickness of this gap larger than the
tunneling distance of electrons and acoustic phonons
[6,7,12,13]. In these conditions, the internal energy density
u within these bodies obeys the conservation equation,

∂uðr; tÞ
∂t ¼ Pradðr; tÞ þ Pcondðr; tÞ; ð1Þ

where Prad denotes the radiative power locally dissipated
per unit volume within a given body and coming from the
other one, while Pcond is the conductive power per unit
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volume around the point r, respectively. The latter can be
calculated as the divergence of conductive flux,

φcondðt;rÞ¼
X
p

Z
4π
dΩ

Z
dωℏωvg;pðωÞfpðt;ω;r;ΩÞ

DpðωÞ
4π

;

ð2Þ

using the distribution function f associated to the heat
carriers within the solid, the density of states DpðωÞ, the
group velocity vg;pðωÞ ¼ ∇kωp of carriers at the frequency
ω and solid angle Ω. The distribution function fp for each
polarization state p can be calculated by solving
Boltzmann’s equation (for a given frequency ω, not shown
for simplicity) under the relaxation time approximation,

∂fp
∂t þ vg;p ·∇fp ¼ −

fp − f0
τp½ω; TðrÞ�

; ð3Þ

where f0 is the equilibrium distribution (Fermi-Dirac for
electrons and Bose-Einstein for phonons) and τp is the
heat-carrier relaxation time.
Concerning the radiative power, we start by neglecting

the energy exchanged between parts of the same slab,
assuming that this contribution is negligible with respect to
conduction. The power PL

rad (PR
rad) dissipated in the left

(right) body and associated to the sources in the other body
can be calculated from the net radiative flux φR

rad (φL
rad)

using the statistical average hSðr;ωÞi ¼ 2RehEðr;ωÞ ×
H�ðr;ωÞi of the Poynting vector spectrum at point r as

PL=R
rad ¼ −

Z
dω∇ · φR=L

rad ðr;ωÞ: ð4Þ

According to the fluctuational-electrodynamics theory [5],
the contribution to the Poynting vector coming from the
sources located in the left or right body reads (using
Einstein convention) for isotropic media when nonlocal
effects are neglected

hSR;Lk ðr;ωÞi¼ i
ω2

c2
ηkjl

×
Z
R;L

dr0ϵ00ðr0;ωÞΘ½Tðr0Þ;ω�GEE
j;l G

HE�
k;l ; ð5Þ

where r is the point where the Poynting vector is calculated,
while r0 is evaluated in all points inside the source (R or L).
In Eq. (5), ηkjl are the components of Levi-Civita tensor (k, j,
and l referring to the three Cartesian coordinates),
ΘðT;ωÞ ¼ ℏω=ðeℏω=kBT − 1Þ is the mean energy of a
Planck oscillator at temperature T, ϵ00 the imaginary part
of the permittivity in the emitting body, while GEE ¼
GEEðr; r0Þ andGHE ¼ GHEðr; r0Þ are the full electric-electric
and electric-magnetic dyadic Green tensors at frequency ω,
taking into account all scattering events within the system
between the emitter and the point where energy is dissipated
[3,14]. Note that this formalism can also be used to handle
systems with temperature dependent permittivities. When
calculating the monochromatic net radiative power (includ-
ing both the power received by the other body and the one
emitted by the body itself) appearing in Prad dissipated at
position r, we use Eq. (4) [by taking the divergence of
Eq. (5)] and finally replace Θ½Tðr0Þ;ω� by Θ½Tðr0Þ;ω� −
Θ½TðrÞ;ω� in order to take into account the power emitted by
the element located at r and ensure vanishing energy
exchange at thermal equilibrium.
To illustrate the importance of coupling mechanism

between conduction and radiation in a two-body system
in near-field interaction, we focus on a simple configuration
made of two identical slabs of arbitrary thickness δ
separated by a vacuum gap of thickness d, and in contact
on their external sides with two thermostats at temperature
TL and TR > TL. For the sake of clarity we consider slabs
made of silicon carbide with a zinc blende crystal structure
(3C-SiC) and thicknesses larger than 10 nm, so that their
dielectric permittivity [15] can be assumed to be size
independent. Using the dispersion relation of acoustic
modes (giving the leading contribution to heat conduction),
making the common isotropic assumption for wave vectors,
and considering the [100] direction in the k space, we
calculate [16] the phonon relaxation time by taking into
account the scattering by point impurities, the umklapp
processes, and the boundary scattering using Matthiessen’s
rule [20],

τ−1ðω; TÞ ¼ Aω4 þ Bω2T3 þ C; ð6Þ

where the coefficients A ¼ 2.1237 × 10−45 s3, B ¼
4.397 × 10−25 s K−3, and C ¼ 1.3949 × 108 s−1 have been

FIG. 1. Sketch of two bodies of finite size at different tempera-
ures, partially coupled to two thermostats (hatched areas) at
temperature TL and TR, and exchanging heat radiatively through
their separation gap. The black dashed lines show the heat-carrier
(electron or phonon) trajectories between successive colliding
events when the characteristic sizes δ1 and δ2 are respectively
much smaller (i.e., ballistic regime) and much larger (i.e.,
diffusive regime) than the mean free path Λ. The temperature
field T1;2ðrÞ inside each body results from the local interplay
between conduction and radiation.
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obtained by fitting the simulated thermal conductivity [16]
with the available experimental data [21] over the tempera-
ture range ½TL; TR�. Using this expression we can derive the
power dissipated by conduction from Eq. (2). As for the
radiative power, it can be calculated from Eq. (4) using the
Green tensors in a multilayer geometry [14]. By neglecting
the contribution of propagative photons we obtain [16]

PradðzÞ ¼
2

π2
X
p

Z þ∞

0

dω
Z þ∞

ω=c
dkke−2ImðkzÞdG1ðz;ωÞ

×
Z

δ

0

dz0
�
n

�
ω −

eV1

ℏ
Hðω − ωg1Þ; Tðz0 þ dÞ

�

− n

�
ω −

eV2

ℏ
Hðω − ωg2Þ; Tð−zÞ

��
G2ðz0;ωÞ;

ð7Þ

where nðω; TÞ ¼ ðeℏω=kBT − 1Þ−1 is the Bose-Einstein dis-
tribution function, HðxÞ the Heaviside step function, while
G1ðz;ωÞ and G2ðz;ωÞ are functions which depend on the
optical properties of slabs [16]. This expression allows us
to compute the radiative power exchanged between
two semiconductors with an applied voltage Vi (i ¼ 1, 2),
resulting in a modified photon statistics above their respective
band gap frequencies ωgi (see Ref. [22] for more details).
The temperature profiles inside the slabs are obtained by

solving through an iterative process Eq. (1) using the
control angle discrete ordinates method [23] to solve
Boltzmann’s equation. For convenience, in the following
we show temperature profiles in the left slabs, with the ones
in the right slab being qualitatively similar. The results in
steady-state regime (i.e., for ∂=∂t≡ 0) are plotted in
Fig. 2(a) for different slab thicknesses and a separation
distance d ¼ 1 nm [the profiles appear normalized in the
main part, to compare the different profile shapes, while
their real value is shown in the inset (see Ref. [16] for a
larger version of the insets of Fig. 2)]. When the thickness
is small (δ ¼ 10 nm) compared to the mean free path of
phonons [16] the regime of transport becomes ballistic. It
follows that the temperature profile becomes almost con-
stant inside the slab (i.e., it corresponds to the so-called
Casimir regime) and it undergoes a sharp variation close to
the reservoir temperature TL (TR) in the left (right) slab [see
also dashed blue curve in Fig. 2(b)]. Nevertheless, near the
internal interfaces we note the presence of a sharp tempera-
ture variation. As shown in Fig. 3(a), this variation
corresponds to the region where almost all the radiative
energy carried by evanescent photons is deposited. This
corresponds to the zone where the radiation-conduction
coupling effectively takes place. As shown in the inset of
Fig. 3(a) we see that for such thicknesses the radiative flux
surpasses the conductive flux by 2 orders of magnitude
close to the interface. Therefore, the phonons cannot cool
down this region through their coupling with the external
reservoir. As a result, the slab is significantly heated up

locally (within some nanometers) close to the interface. On
the other hand, beyond this region the conductive flux
dominates the rapidly decaying radiative flux, so that the
atomic lattice is thermalized at the reservoir temperature
thanks to the ballistic phonons. For thicker slabs
(δ > 5 μm), we see in the inset of Fig. 3(a) that the
radiative flux still dominates over the conductive one
within a few nanometers from the vacuum interface.
However, in this case the regime of conduction tends to
be diffusive and the atomic lattice does not thermalize
anymore at the reservoir temperature. The temperature
profile decays gradually (linearly for a purely diffusive
regime) to the reservoir temperature thanks to the local
colliding events of phonons. Figure 2(b) shows the results
for a larger separation distance (d ¼ 5 nm). While the
overall qualitative behavior remains the same, the temper-
ature drop is much smaller, due to the 1=d2 decay of the
radiative flux. Also we note that the local radiative heating
takes place at greater depth within the slab, the surface-
parallel wave vectors of smaller value being preponderant
for this separation distance.
We now want to address the impact of conduction-

radiation coupling on the value of radiative flux. We first

FIG. 2. (a) Steady-state temperature (inset) and normalized
temperature profile inside the left slab for different thicknesses
and a separation distance d ¼ 1 nm. (b) Same as (a) for
d ¼ 5 nm.
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focus on the spatial distribution of radiative flux φrad within
the left slab. The results predicted by the PvH theory for
two slabs set at uniform temperatures TL ¼ 300 K and
TR ¼ 400 K are shown in Fig. 3(b) inside the first 20 nm
from the vacuum gap. For the three considered thicknesses
the flux is rapidly decaying and its value is almost the same
over the first 2 nm [24,25]. The inset of Fig. 3(b) shows the
ratio between the exact value of the flux (taking into
account the radiation-conduction coupling mechanism)
and the PvH predictions. While for δ ¼ 10 nm the PvH
description is reliable, for higher thicknesses it largely
overestimates the exact flux, as a result of the conduction-
induced temperature profile.
We finally focus on the net radiative flux exchanged

between the two slabs and compare it to the flux predicted
by the PvH theory when the two bodies are held at uniform
temperature. More specifically, we compare the exact flux
to the PvH one with TL ¼ 300 K and TR ¼ 400 K, and to
the PvH result using as slab temperatures the values of the
temperatures at the boundaries with the vacuum gap in the
steady states derived from our approach. The latter is

referred as modified PvH. At 1 nm separation distance
[Fig. 3(c)], we see that for slab thicknesses larger than
about 1 μm the discrepancy between the PvH prediction
and our theory increases dramatically. The relative error is
close to 5% when δ ¼ 1 μm and scales as δ2 beyond this
thickness. In slabs of such thicknesses the regime of heat
transport becomes almost diffusive (see the phonon mean
free path in Ref. [16]) and the difference with the PvH
theory comes from the linear variation of temperature
profile which significantly reduces the temperature differ-
ence between the slabs. With thinner slabs the difference
between the exact and the PvH theory becomes less
pronounced, despite the temperature drop close to the
internal interfaces highlighted previously. Nevertheless,
in these cases a relative error of about 2% persists.
Focusing on the modified PvH result, we note that it pretty
well reproduces the exact results for any slab thickness.
This demonstrates that the heat transfer between two solids
in the extreme near field is mainly a surface-interaction
mechanism. Nevertheless, while this is interesting from a
fundamental point of view, we stress that the modified PvH
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FIG. 3. (a) Radiative flux φrad within the left slab in a system of two 3C-SiC slabs of thickness δ ¼ 10 nm and δ ¼ 5 μm separated by
a vacuum gap of thickness d ¼ 1 nm and thermostatted on their back sides at TL ¼ 300 K and TR ¼ 400 K. Inset: ratio between φrad
and the conductive flux φcond. (b) Absolute value of the PvH flux within the left slab for δ ¼ 10 nm and δ ¼ 5 μm for a separation
distance d ¼ 1 nm. Inset: ratio between the exact radiative flux φrad and the PvH prediction. (c),(d) Radiative heat flux exchanged
between two 3C-SiC slabs with respect to their thickness for a separation distance of (c) d ¼ 1 nm and (d) d ¼ 5 nm. We show the exact
result (black line), the PvH flux (red dashed line, uniform temperatures TL ¼ 300 K and TR ¼ 400 K), and the modified PvH flux (blue
long dashed line, uniform temperatures equal to the temperatures at the boundaries with the vacuum gap in the steady states resulting
from the coupling with conduction). Insets: absolute value of the error with respect to the PvH and modified PvH approaches.
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calculation cannot be obtained without a full solution of the
problem including the coupling mechanism. When the
separation distance is increased to d ¼ 5 nm we see
[Fig. 3(d)] that for thin slabs (i.e., ballistic regime) the
predictions of the PvH theory match perfectly well the
exact calculation. In this case the radiative coupling
between the two slabs is significantly smaller than at
d ¼ 1 nm, so that the induced temperature gradient is
much smaller [see Fig. 2(a)]. In this scenario, we only see a
discrepancy with respect to the PvH results for large
thicknesses, whereas the agreement with the modified
PvH results is almost perfect. Moreover, the comparison
of results plotted in Figs. 3(c) and 3(d) shows that for thin
films the radiative flux fits perfectly well the usual 1=d2

scaling law as predicted by the PvH theory. On the other
hand, for thicker films (i.e., when the deviation with the
PvH becomes more significant) this flux increases slower
when the separation distance is reduced. This “saturation or
attenuation effect“induced by the radiation-conduction
coupling is consistent with the previous observations [8].
Up to now we have applied our theory to systems made

of solids with relatively high thermal conductivity. In
weakly conducting solids the phonon-photon coupling
and its thermal consequences can be radically different.
This change is illustrated in Fig. 4 for two thick slabs of
semiconductors in interaction at 100 nm separation dis-
tance. In this case, when an external bias voltage is applied
to the hotter body, the magnitude of radiative heat flux
mediated by the evanescent photons is comparable to the
heat flux carried by the acoustic phonons, and we clearly
see that the temperature profiles dramatically differ from
the ones (almost constant) obtained without bias. In this
case and differently from the case of two polar materials
(where the radiative heat exchange is mainly mediated by

surface waves, that is to say by localized resonant modes
with large wave vectors), the near-field heat exchanges
beyond the semiconductor gaps come mainly from a
continuum of frustrated modes which have by definition
a small wave vector. Hence in this case the radiative power
is dissipated at the heart of solids even for relatively large
separation distances.
In conclusion, we have introduced a general theory to

describe heat exchanges between two closely spaced solids
of arbitrary size. Our theory takes into account the con-
duction-radiation coupling between the two bodies, not
included in PvH theory. By applying this theory to parallel
planar slabs made of polar dielectrics or semiconductors,
we have shown that this coupling produces an inhomo-
geneous temperature profile within each body, resulting in a
radiative flux which can differ significantly from the one
predicted by the PvH theory. In weakly conducting
semiconductors we have shown that the phonon-photon
coupling can dramatically modify the thermal state of
solids up to separation gaps of hundreds of nanometers.
This theory can be relevant in the modeling of experiments
exploring heat transfer in near-field and extreme near-field
regime. It allows for a better temperature and heat-flux
control at nanoscale and could find applications in the
fields of thermal management, near-field solid-state cool-
ing, and nanoscale energy conversion.
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