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We compute the gravitational multipole moments and ratios of moments of nonextremal and of
supersymmetric black holes in four dimensions, as well as of horizonless microstate geometries of the
latter. For supersymmetric and for Kerr black holes many of these multipole moments vanish, and their
dimensionless ratios are ill defined. We present two methods to compute these dimensionless ratios, which
for certain supersymmetric black holes agree surprisingly well. We also compute these dimensionless ratios
for the Kerr solution. Our methods allow us to calculate an infinite number of hitherto unknown parameters
of Kerr black holes, giving us a new window into their physics.

DOI: 10.1103/PhysRevLett.125.221602

Introduction.—There is an extended literature that argues
that in order for black hole evaporation to be consistent
with quantum unitarity, there should exist a structure at the
scale of the horizon of the black hole [1,2]. This structure,
commonly referred as a fuzzball or firewall, has highly
unusual properties in that its stiffness prevents its imme-
diate collapse into the black hole. The only top-down
construction of such structure is given by black hole
microstate geometries [3–9], which are smooth horizonless
solutions of string theory that have the same mass and
charge as a black hole but in which the horizon is replaced
by a complicated structure of topologically nontrivial
bubbles wrapped by fluxes.
Understanding how the physics of this structure differs

from the physics of the black hole is of crucial importance,
especially in the light of the recent observations of
gravitational waves emitted when two black holes merge
[10], and of future experiments that plan to explore extreme
mass-ratio inspiral (EMRI) gravity waves [11] that should
reveal very detailed information about horizon-scale phys-
ics. One important way in which microstate geometries
differ from the black hole is in the higher multipole
moments of the mass and angular momentum. Since
EMRI gravitational waves are sensitive to many of these
multipole moments and invariant ratios thereof, it is a
crucial problem to calculate precisely these multipole
moments for microstate geometries and to compare them
to those of the corresponding black hole.

Most of the black hole microstate geometries that have
been constructed so far correspond to extremal black holes
and so do not allow us to make quantitative predictions that
could be compared to what will measured from EMRI
gravitational waves. However, one can use extremal black
holes and their microstates to understand qualitatively the
new black-hole physics that can be glimpsed from the
gravitational multipoles of microstate geometries, much as
one uses the N ¼ 4 SYM quark-gluon plasma to under-
stand qualitatively features of the quark-gluon plasma in
the real world.
In this Letter, we compute the gravitational multipoles of

generic nonextremal black holes in four dimensions, and of
horizonless microstate geometries that have the same mass
and charges as the supersymmetric extremal black hole.
Because of its symmetry and lack of angular momentum,
all the gravitational multipoles of the supersymmetric
(BPS) black hole vanish, with the exception of the mass
M0. However, for generic microstate geometries of this
black hole all multipoles are finite. Furthermore, in the
“scaling limit” in which the throat of the microstate
geometries becomes very long, and they become more
and more similar to the black hole, all their extra multipoles
vanish and only M0 survives.
However, one can also consider ratios of multipole

moments that stay finite in the scaling limit, such as the
product of the angular momentum and the current quadru-
pole moment divided by the product of the mass and the
mass octopole moment:

S1S2
M3M0

: ð1Þ

This, and many other multipole ratios, cannot be
computed in the four-dimensional BPS black hole solution,
where they are zero over zero. Hence, by computing these
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ratios in the scaling limit of various microstate geometries,
we obtain a whole set of new quantities that characterize the
BPS black hole. We will call this method of computing
multipole ratios the “direct BPS” method.
Another way to compute multipole ratios that are

undefined in the black hole geometry is to deform the
supersymmetric black hole into a nonextremal, rotating
black hole, compute its multipole ratios and take back the
supersymmetric, nonrotating limit; we will call this the
“indirect” method. For certain families of BPS black holes,
we find that the multipole ratios computed using these two
different methods are amazingly close.
Similarly, we can use the indirect method to compute

multipole ratios that are undefined for the Kerr black hole:
one can deform it into a general charged STU black hole,
compute multipole ratios, and take back the charges to zero.
In this way, we can associate well-defined multipole ratios
with the Kerr black hole. These previously unknown ratios
provide new constraints for any model that parametrizes
departures from the Kerr solution that may have an effect of
gravitational waves.
We will first review the formalism to compute gravita-

tional mass and current multipoles, and apply it to the most
generic nonextremal STU black hole in four dimensions,
and to several families of multicenter bubbling solutions
that have the same charges and mass as the supersymmetric
four-dimensional STU black holes. We will then use our
two methods to compute multipole ratios for BPS black
holes and discuss when these ratios agree. We also use the
indirect method to compute new hitherto unknown multi-
pole ratios for the Kerr black hole.
Gravitational multipoles in four dimensions.—A coor-

dinate-independent way to define multipole moments in a
stationary, asymptotically flat four-dimensional spacetime
was introduced by Thorne [12] (and shown to be equivalent
to the Geroch-Hansen formalism [13–15]). By using so-
called ACMC-N (asymptotically Cartesian mass centered
to order N) coordinates, one can read off the multipole
moments from an asymptotic expansion of the metric. For
stationary, axisymmetric spacetimes with Killing vectors
∂t; ∂ϕ [for which the ðl; mÞ multipoles are only nonzero for
m ¼ 0], the asymptotic expansion of the metric compo-
nents involving t in an ACMC-∞ coordinate system are
given by

gtt ¼ −1þ 2M
r

þ
X∞

l≥1

2

rlþ1

�
MlPl þ

X

l0<l

cðttÞll0 Pl0

�
;

gtϕ ¼ −2rsin2θ
�X∞

l≥1

1

rlþ1

�
Sl
l
P0
l þ

X

l0<l

cðtϕÞll0 P0
l0

��
; ð2Þ

where Pl ¼ Plðcos θÞ are Legendre polynomials. The terms
that contain cðijÞll0 correspond to nonphysical “harmonics,”
and depend on the particular ACMC coordinates used. Note
that for a given l, the only cll0 terms that may appear in the

expansion have l0 < l. The purely spatial metric compo-
nents must also satisfy a similar expansion [12,16]. Note
that these coordinates remain asymptotically Cartesian
(AC-∞) if one shifts the center of mass of the solution,
but are only mass centered when the mass dipole moment
M1 is zero.
The coefficients Ml, Sl are coordinate independent; Ml

are the “mass multipoles,” while Sl are the angular
momentum or “current multipoles” of the metric. The
most familiar ones are the mass M ¼ M0 and angular
momentum J ¼ S1 [17].
Most general nonextremal STU black hole in four

dimensions.—This solution (Ref. [18], Sec. 5.2) depends
on 11 parameters: the mass and rotation parameters, m and
a, as well as four electric and four magnetic charge
parameters, δI and γI, for I ¼ 0;…; 3 and a NUT charge
that we set to zero to avoid closed timelike curves. The
mass and angular momentum of the black hole are

M ¼ m

�
μ1 − μ2

ν1
ν2

�
; J ¼ −ma

�ðν1Þ2
ν2

þ ν2

�
; ð3Þ

where μi, νi are complicated combinations of the electric
and magnetic parameters δI , γI [see Eqs. (4.18), (4.19),
(4.20), and (5.5) in Ref. [18] for the exact relations]. The
metric is given in Ref. [18] in terms of coordinates
ðt; r; u;ϕÞ. By performing the coordinate transformation
u≡ −mν1=ν2 þ a cos θ, and then

rS sin θS ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ; rS cos θS ≡ r cos θ; ð4Þ

we obtain AC-∞ coordinates ðt; rS; θS;ϕÞ. We then shift
the center of mass to obtain ACMC-∞ coordinates, which
allows us to read off the multipole moments of this black
hole:

Ml ¼ −
i
2

�
−

a
M

�
l
ZZ̄ðZl−1 − Z̄l−1Þ;

Sl ¼
i
2

�
−

a
M

�
l−1 J

M
ðZl − Z̄lÞ; ð5Þ

where

Z≡D − iM; with D≡m

�
μ2 þ

ν1
ν2

μ1

�
: ð6Þ

This solution reduces to the Kerr black hole when all
charges vanish, which corresponds to D ¼ 0 and J ¼ Ma.
The multipoles in Eq. (5) then become the known Kerr
multipoles: Ml þ iSl ¼ MðiaÞl. The parameter D also
vanishes for purely electric black holes, such as Kerr-
Newman, and is only finite for black holes that have both
electric and magnetic charges.
This general black hole also reduces to the super-

symmetric (static) D6-D2-D0 black hole when a ¼ 0
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and m ¼ 0, and we can see that in this limit all of its dipole
moments, except M0, vanish. This makes perfect sense:
four-dimensional supersymmetric black holes must have
zero angular momentum and SO(3) symmetry.
General supersymmetric bubbled geometries.—These

horizonless solutions are smooth in five dimensions and
can haveR4;1 orR3;1 × S1 asymptotics. The latter solutions
have the same mass and charges as a four-dimensional
supersymmetric black hole, and can be reduced to
(singular) multicenter solutions of four-dimensional super-
gravity of the type constructed by Denef and Bates [19].
The four-dimensional metric is

ds2 ¼ −½QðHÞ�−1
2ðdtþ ωÞ2 þ ½QðHÞ�12ðdx2 þ dy2 þ dz2Þ:

ð7Þ

The solution is completely determined by 8 harmonic
functions H ¼ ðV;KI; LI;MÞ (I ¼ 1, 2, 3) on the flat
R3 basis spanned by ðx; y; zÞ [20,21]. These harmonic
functions are determined by the locations and residues of
their poles, r⃗i (i ¼ 1;…; N), which are commonly known
as “centers.” The coefficients hi together are the charges
associated to the center i, collectively denoted by the charge
vector Γi:

Γi ¼ ðvi; ki1; ki2; ki3; li1; li2; li3; miÞ: ð8Þ

The harmonic functions are then collectively given by

H ¼ h0 þ
XN

i¼1

Γi

ri
; ð9Þ

where h0 are the moduli (values at infinity) associated to the
harmonic functions and where ri ≡ jr⃗ − r⃗ij is the distance
in R3 to the ith center. The warp factors and rotation
parameters of the five-dimensional solution are

QðHÞ ¼ Z1Z2Z3V − μ2V2; ZI ¼ LI þ
1

2V
CIJKKJKK;

ð10Þ

μ ¼ M þ 1

2V
KILI þ

1

6V2
CIJKKIKJKK; ð11Þ

where for the STU model CIJK ¼ jϵIJKj.
In this Letter we will only consider axisymmetric

bubbling geometries, where all centers are on the z axis
(at positions zi) and ∂ϕ is a Killing vector, but the extension
to nonaxisymmetric bubbling geometries is straight-
forward [22,23].
Upon choosing canonical moduli corresponding to a

D6-D2-D0 black hole,

ðv0; k01; k02; k03; l01; l02; l03; m0Þ ¼ ð1; 0; 0; 0; 1; 1; 1; 0Þ; ð12Þ

we find the mass and current multipoles:

Ml ¼
1

4

X

i

½vi þ li1 þ li2 þ li3Þ�zli; ð13Þ

Sl ¼
1

4

X

i

½−2mi þ ki1 þ ki2 þ ki3�zli; ð14Þ

where we have implicitly shifted the origin of the z
coordinates to be at the center of mass of the solution.
This is obtained by requiring that M1 vanish, and ensures
that the ðx; y; zÞ coordinates are ACMC-∞.
Multipoles of horizonless BPS microstate geometries.—

In this Letter we compute the mass and current multipoles
for the three classes of horizonless microstate geometries
that we construct in this section. These geometries are
determined by the poles of V;K1; K2, and K3 and by the
moduli. To ensure that the solutions are smooth in five-
dimensional supergravity, the liI and mi charges at the ith
center are given by

liI ¼ −
1

2
CIJK

kiJk
i
K

vi
; mi ¼ 1

12
CIJK

kiIk
i
Jk

i
K

ðviÞ2 : ð15Þ

The moduli of the solutions we construct are

ð1;−2m0; 0; 0; 1; 1; 1; m0Þ; ð16Þ

where the value of m0 is fixed by requiring no closed
timelike curves and four-dimensional asymptotic flatness.
To obtain a solution with canonical moduli (12) we further
perform a gauge transformation:

ðK1; LI;MÞ → ðK1; LI;MÞ − c

�
−V;CIJ1KJ;

1

2
L1

�
; ð17Þ

with c ¼ 2
P

i m
i=ð1þP

i l
i
1Þ. It is in this final gauge that

we compute the multipole ratios of the solutions and we
compare them to those of the corresponding black hole.
Solution A.—The charges of this solution are those of the

four-center scaling solution constructed in Ref. [6], but the
asymptotics we consider is R3;1 × S1. For simplicity of
presentation, we give the k̃iI parameters of the solution,
which are related to the kiI by

kiI ¼ k̃iI − vik̃ðtotÞI ; k̃ðtotÞI ≡X

i

k̃iI: ð18Þ

The vi charges and k̃iI parameters are
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vi ¼ ð1; 1; 12;−13Þ;

k̃i1 ¼
�
−

2087

10000
;−

678089

1250
;
55636379

10000
þ k̂;

3445309

2000

�
;

k̃i2 ¼
�
−

491

2500
;
4712993

1250
;
30306499

5000
;
32175101

5000

�
;

k̃i3 ¼
�

1

10000
;−

49939

10000
;−

311181

5000
;
133657

2000

�
; ð19Þ

and the liI; m
i charges are given by Eq. (15).

The solution has a scaling limit when k̂ ≈ −0.804597. In
this limit, the intercenter distances rij collapse as
rij → ϵrij, and the throat of the solution becomes longer
and longer, resembling more and more the black hole.
However, the size of the bubbles at the cap of the solution
remains the same [3], so the solution is smooth and
horizonless for any ϵ > 0. In the ϵ → 0 limit, the solution
appears to be virtually indistinguishable from the black
hole, and all multipoles except the mass M0 vanish.
Note that both for this solution and the next ones, the

charges vi and k̃iI (or kiI) are not integers. This is not a
problem since in a scaling solution with four-dimensional
asymptotics we can always multiply all the vi; kiI; l

i
I , andm

i

charges by a very large overall coefficient and round up to
the nearest integer. As k̂ approaches the scaling point this
results in a series of solutions whose throats become longer
and longer and which can be used to compute the multipole
ratios in the scaling limit to arbitrary precision.
Solution B.—This solution has the following vi and k̃iI

charges:

vi ¼ ð1;−156.96; 159;−2.04Þ;
k̃i1 ¼ ð0.4951þ k̂;−217.1; 166.6;−6.899Þ;
k̃i2 ¼ ð0.9053;−474.0; 461.6;−6.905Þ;
k̃i3 ¼ ð1.226;−68.79; 50.96;−0.6686Þ; ð20Þ

and the scaling limit is reached when k̂ ≈ 0.5354.
Solution C.—The vi and k̃iI charges are

vi ¼ ð1.000;−1.896; 2.000;−0.1037Þ;
k̃i1 ¼ ð0.7796þ k̂;−20.99; 15.88;−7.329Þ;
k̃i2 ¼ ð0.4543; 2.452;−9.061; 0.1448Þ;
k̃i3 ¼ ð−0.09249;−5.241; 3.364;−0.2651Þ; ð21Þ

and the scaling limit is reached when k̂ ≈ −1.6122.
A new window into black holes.—As we have explained

in the introduction, for BPS black holes we can calculate
multipole ratios both by taking the scaling limit of ratios
calculated in multicenter BPS bubbling solutions (the direct
BPS method), and by calculating these ratios in the general
STU black hole and then taking the BPS limit (the indirect
method). As we will see below, for certain families of black

holes the multipole ratios computed using these two very
different methods agree unexpectedly well. Indeed, while
the indirect method involves small deformations of the
original black hole which keep the horizon structure intact,
the direct method uses horizonless solutions that are
drastically different from the black-hole solution at the
scale of the horizon.
One can also use our indirect method to calculate

multipole ratios that are ill defined in the Kerr geometry.
These are ratios containing one or more factors of S2l or
M2lþ1 (for any l), which vanish for Kerr black holes. Using
our indirect method, one can compute these ratios by
deforming the Kerr black hole into a general STU black
hole, evaluating the multipole ratios for this general STU
black hole, and then taking back the Kerr limit.
We emphasize that the indirect method gives the same

result regardless of how one deforms the original black hole
in the 56-dimensional space of charges of the low-energy
N ¼ 8 supergravity theory that arises from compactifying
string theory on T 6. This can be seen using U-duality
(which leaves the 4D metric invariant) [18], and we believe
this constitutes strong evidence that our indirect method
gives a universal result which characterizes the original
black hole and small deformations thereof.
In Table I we give several multipole ratios calculated

using the direct BPS and indirect methods for the BPS
black holes corresponding to the A, B, and C solutions, and
using the indirect method for the Kerr black hole.
Multipole ratios for BPS black holes.—It is immediately

clear that the multipoles computed using the two methods
match extremely well for the BPS solutions A and B and
rather poorly for solution C. We can quantify this by
defining, for a given ratio M, the “mismatch parameter”
EðMÞ ≡ jðMðdirÞ −MðindÞÞ=MðindÞj, where MðdirÞ;MðindÞ
are the ratios calculated using the two methods. When
averaged over all entries of Table I, the three solutions have

EaveðAÞ ¼ 0.0451; EaveðBÞ ¼ 0.000 888;

EaveðCÞ ¼ 2.31: ð22Þ

Since we are working with four-dimensional BPS black
holes whose five-dimensional uplift is a BMPV black hole
in a Taub-NUT space, we can define an entropy parameter
H, which describes how close the BMPV black hole is to
the cosmic censorship bound [6]. In our four-dimensional
solutions, this encodes how much entropy the black hole
has compared to the entropy of a purely electric black hole
with the same charges:

H ¼ QðQI; PIÞ
Q1Q2Q3Q4

; ð23Þ

where QI are the D2,D2,D2 and D6 (electric) charges and
QðQI; PIÞ is the quartic invariant (10) evaluated on the
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black hole charges, related to the entropy of the black hole
as S ¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QðQI; PIÞ

p
[24].

Its values for the three solutions we consider is

HðAÞ ¼ 7.7 × 10−4; HðBÞ ¼ 7.9 × 10−6;

HðCÞ ¼ 0.055:

Comparing this to Eq. (22), it is clear that there is a
correlation between small H and small mismatch E. One
can also analyze other microstate geometries to confirm this
correlation [22]. We also checked that there is no corre-
lation of Eq. (22) with any other quantity, such as the
relative scale separation in distances between centers in the
microstate geometries.
As we mention above, the agreement between the direct

BPS and indirect methods of evaluating multipole ratios is
unexpected and deserves further attention. We also note
that the two methods do disagree for other black holes, as
one can see in Fig. 1 [25].

Kerr multipole ratios.—An interesting result of our
calculations is that some multipole ratios, such as those
in the third and fifth rows of the table, are extremely close
to 1. These ratios are independent of the charges of the
black hole and hence this value is universal, describing both
supersymmetric and Kerr black holes, as well as everything
else in between.
Furthermore, using our general result (5) one can

compute previously unknown ratios of vanishing multipole
moments for the Kerr black hole, such as

M2Sl
Mlþ1S1

¼ 1 and
Mlþ2Sl
MlSlþ2

¼ −1þ ð−1Þlð2lþ 1Þ
3þ ð−1Þlð2lþ 1Þ :

These and other similar ratios are independent of the
rotation parameter a, so they also characterize the
Schwarzschild black hole. They in turn severely constraint
the possible (small) deviations from Kerr multipoles that
one may hope to measure using gravitational waves.
Indeed, in the Kerr solution M2nþ1 ¼ S2n ¼ 0 and our
calculation predicts that, if there are small modifications of
the Kerr black hole that make these multipoles finite, they
must satisfy (with ϵ a small parameter)

M2nþ1 ¼ −aS2n ¼ nMað−a2Þnϵ: ð24Þ

We believe that our results indicate that multipole ratios
are an intrinsic feature of black holes. Our indirect method
gives universal results for black holes deformed in a
toroidal compactifications of string theory at two-derivative
order; our conjecture is that the universality of our results
will continue to hold for more generic compactifications
and at higher derivative order. Furthermore, these multipole
ratios can be used to place highly nontrivial constraints on
modifications of the Kerr multipole moments that produce

50 100 150 200
L

–5

–4

–3

–2

–1

1

2
R

FIG. 1. Multipole ratios RðLÞ≡ML=2M3L=2=M2
L (even L) in

the geometry C, calculated using the direct BPS method (in red)
and the indirect method (in blue).

TABLE I. Multipole ratios for the geometries A, B, C computed using the two methods, and for Kerr computed using the indirect
method. The ratios marked with ð�Þ can be computed also in the Kerr geometry itself; all the other ratios are ill defined in the Kerr
geometry and can only be computed using our indirect method.

Direct BPS Indirect

Ratio A B C A B C Kerr

S1S1=M2M0 −28.6 −135 1.06 −22.6 −136 −6.20 −1 ð�Þ
S1S3=M2M2 87.1 405 3.27 67.8 407 16.1 −1 ð�Þ
M2S2=M3S1 1.00 1.00 1.14 1 1 1 1
M2S2=M0S4 −0.491 −0.500 0.267 −0.501 −0.500 −0.627 1

2
M2S3=M4S1 1.01 1.00 1.06 1 1 1 1 ð�Þ
M3S2=M2S3 1.32 1.33 0.703 1.33 1.33 1.39 0 ð�Þ
S3S2=S1S4 1.50 1.50 0.822 1.50 1.50 1.63 1

2
M3M3=M6M0 −0.791 −0.800 0.183 −0.802 −0.800 −1.15 0 ð�Þ
M3M3=M4M2 1.33 1.33 0.654 1.33 1.33 1.39 0 ð�Þ
M2S4=M4S2 0.676 0.667 1.29 0.666 0.667 0.615 2
M4S4=M2S6 1.96 2.00 0.801 2.00 2.00 2.68 2

3
M5S3=M3S5 1.18 1.20 1.08 1.20 1.20 1.32 2
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a measurable effect on the gravitational waves emitted
during black hole mergers.
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