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Within general relativity, the unique stationary solution of an isolated black hole is the Kerr spacetime,
which has a peculiar multipolar structure depending only on its mass and spin. We develop a general
method to extract the multipole moments of arbitrary stationary spacetimes and apply it to a large family of
horizonless microstate geometries. The latter can break the axial and equatorial symmetry of the Kerr
metric and have a much richer multipolar structure, which provides a portal to constrain fuzzball models
phenomenologically. We find numerical evidence that all multipole moments are typically larger (in
absolute value) than those of a Kerr black hole with the same mass and spin. Current measurements of the
quadrupole moment of black-hole candidates could place only mild constraints on fuzzballs, while future
gravitational-wave detections of extreme mass-ratio inspirals with the space mission LISA will improve
these bounds by orders of magnitude.
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Introduction.—Owing to the black-hole (BH) unique-
ness and no-hair theorems [1,2] (see also Refs. [3–5]),
within general relativity (GR) any stationary BH in iso-
lation is also axisymmetric and its multipole moments
satisfy an elegant relation [6]

MBH
l þ iSBH

l ¼ Mlþ1ðiχÞl; ð1Þ
where Ml (Sl) are the Geroch-Hansen mass (current)
multipole moments [6,7], the suffix “BH” refers to the BH
metric, M ¼ M0 is the mass, χ ≡ J =M2 is the dimen-
sionless spin, and J ¼ S1 is the angular momentum (we
use natural units throughout). (For a generic spacetime, the
multipole moments of order l are rank-l tensors, which
reduce to scalar quantities Ml and Sl in the axisymmetric
case. See below for the general definition.) Equation (1)
implies that all Kerr moments with l ≥ 2 can be written
only in terms of the mass M and angular momentum J of
the spacetime. Introducing the dimensionless quantities
M̄l ≡Ml=Mlþ1 and S̄l ≡ Sl=Mlþ1, the nonvanishing
moments are

M̄BH
2n ¼ ð−1Þnχ2n; S̄BH

2nþ1 ¼ ð−1Þnχ2nþ1; ð2Þ

for n ¼ 0; 1; 2;…. The fact that Ml ¼ 0 (Sl ¼ 0) when l
is odd (even) is a consequence of the equatorial symmetry
of the Kerr metric. Likewise, the fact that all multipoles
with l ≥ 2 are proportional to (powers of) the spin—as
well as their specific spin dependence—is a peculiarity of
the Kerr metric, that is lost for other compact-object
solutions in GR [8,9] and also for BH solutions in other
gravitational theories.
Testing whether these properties hold for an astrophysi-

cal dark object provides an opportunity to perform multiple
null-hypothesis tests of the Kerr metric—for example, by
measuring independently three multipole moments such as
the mass, spin, and mass quadrupole M2—serving as a
genuine strong-gravity test of Einstein’s gravity [10–16],
along with other proposed observational tests of fuzzballs
(see, e.g., Refs. [17,18]). In this context, it is intriguing that
current gravitational-wave (GW) observations (especially
the recent GW190814 [19] and GW190521 [20,21]) do not
exclude the existence of exotic compact objects other than
BHs and neutron stars.
In GR, BHs have curvature singularities that are con-

jectured to be always covered by event horizons [22–24].
At the quantum level, BHs behave as thermodynamical
systems with the area of the event horizon and its surface
gravity playing the role of the entropy and temperature,
respectively [25,26]. In fact, a BH can evaporate emitting
Hawking radiation [27]. This gives rise to a number of
paradoxes that can be addressed in a consistent quantum
theory of gravity such as string theory [28].
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For special classes of extremal [charged Bogomol’
nyi-Prasad-Sommerfield (BPS)] BHs [29–31] one can pre-
cisely count the microstates that account for the BH entropy.
In some cases, one can even identify smooth horizonless
geometries with the same mass, charges, and angular
momentum as the corresponding BH. These geometries
represent some of the microstates in the low-energy
(super)gravity description. The existence of a nontrivial
structure at the putative horizon scale is the essence of the
fuzzball proposal [32–35]. In the latter, many properties of
BHs in GR emerge from an averaging procedure over a large
number of microstates, or as a “collective behavior” of
fuzzballs [36–40]. So far it has been hard to find a statistically
significant fraction of microstate geometries both for five-
dimensional (three-charge) and for four-dimensional (four-
charge) BPS BHs. Yet, several classes of solutions based on a
multicenter ansatz [41–46] have been found and their string
theory origin uncovered [47–49].
Although in viable astrophysical scenarios BHs are

expected to be neutral, charged BPS BHs are a useful
toy model to explore the properties of their microstates.
Extending the fuzzball proposal to neutral, non-BPS BHs
in four dimensions and finding predictions that can be
observationally tested so as to distinguish this from other
proposals and from the standard BH picture in GR [16]
remain an open challenge.
In this Letter and in a companion paper [50], we inves-

tigate the differences in themultipolar structure betweenBHs
and fuzzballs. As we shall argue, already at the level of the
quadrupole moments the nonaxisymmetric geometry of
generic microstates in the four-dimensional fuzzball model
leads to a much richer phenomenology and to potentially
detectable deviations from GR.
Setup.—Our method is based on Thorne’s seminal

work on the multipole moments of a stationary isolated
object [51]. The idea is to choose a suitable coordinate
system—so-called asymptotically Cartesian mass centered
(ACMC)—whereby the mass and current multipole
moments can be directly extracted from a multipolar
expansion of the metric components. In an ACMC system,
the metric of a stationary asymptotically flat object can be
written as [50]

ds2¼−ð1−c00Þdt2þc0idtdxiþð1þc00Þdx2i þ��� ð3Þ
with xi ¼ fx; y; zg, and c00 and c0i admitting a spherical-
harmonic expansion of the form [51]

c00¼2
X∞
l¼0

Xl
m¼−l

1

r1þl

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ1

r
ðMlmYlmþl0<lÞ;

c0i¼2
X∞
l¼1

Xl
m¼−l

1

r1þl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πðlþ1Þ
lð2lþ1Þ

s
ðSlmYB

i;lmþl0<lÞ; ð4Þ

in terms of the scalar (Ylm) and axial vector (YB
i;lm)

spherical harmonics. [It can be shown that the radial

(YR
i;lm) and electric (Y

E
i;lm) vector spherical harmonics only

appear in subleading terms and do not affect the multipole
moments [51].] The expansion coefficients Mlm and Slm
are the mass and current multipole moments of the
spacetime, respectively. They can be conveniently packed
into a single complex harmonic function

H ¼
X∞
l¼0

Xl
m¼−l

1

r1þl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
ðMlm þ iSlmÞYlm: ð5Þ

In the case of the Kerr metric, H is simply given by

HKerr ¼
Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ x22 þ ðx3 − i J
MÞ2

q ; ð6Þ

with two centers at positions z ¼ �J =M along the z axis.
The harmonic expansion of Eq. (6) does not contain m ≠ 0
terms, so that for each l the moment tensors reduce to the
scalars Ml ≡Ml0 and Sl ≡ Sl0. The same holds for
more general axisymmetric metrics. [The normalization of
Thorne’s multipoles can be chosen in order to correspond to
the Geroch-Hansen ones [6,7] used in Eq. (1) in the
axisymmetric case [52].]
Here we consider fuzzball solutions of gravity in four

dimensions minimally coupled to four Maxwell fields and
three complex scalars. A general class of extremal solutions
of the Einstein-Maxwell system is described by a metric of
the form [53–55]

ds2 ¼ −e2Uðdtþ wÞ2 þ e−2U
X3
i¼1

dx2i ; ð7Þ

with

e−4U ¼ L1L2L3V − K1K2K3M þ 1

2

X3
I>J

KIKJLILJ

−
MV
2

X3
I¼1

KILI −
1

4
M2V2 −

1

4

X3
I¼1

ðKILIÞ2;

�3dw ¼ 1

2
ðVdM −MdV þ KIdLI − LIdKIÞ; ð8Þ

where �3 is the Hodge dual in three-dimensional flat space,
fV; LI; KI;Mg are eight harmonic functions associated
with the four electric and four magnetic charges, and
I; J ¼ 1, 2, 3.
Fuzzball solutions are obtained by distributing the

charges of the eight harmonic functions among N centers
in such a way that the geometry near each center lifts to a
regular five-dimensional geometry. More explicitly, we
take
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V ¼ v0 þ
XN
a¼1

va
ra

; M ¼ m0 þ
XN
a¼1

ma

ra
;

KI ¼ kI0 þ
XN
a¼1

kIa
ra

; LI ¼ lI;0 þ
XN
a¼1

lI;a

ra
; ð9Þ

with ra ¼ jx − xaj the distance from the ath center.
Results.—Comparing the metric (7) with the definition of

an ACMC metric (3), one can extract the multipole
moments of the fuzzball solution (details are given in
Ref. [50]). The fuzzball multipole moments are encoded in
the multipole harmonic function

H ¼ 1

4

XN
a¼1

�
V þ iM þ

X3
I¼1

ðLI − iKIÞ
�
: ð10Þ

This complex harmonic function is a generalization of the
Kerr case [Eq. (6)]; the latter can be interpreted as a two-
center solution, with the Schwarzschild case corresponding
to a single center. The above expression is instead valid for
generic N-center solutions, regardless of the presence of
electromagnetic and scalar fields.
Expanding the harmonic function H yields the multipole

moments

Mlm ¼ 1

4

XN
a¼1

�
va þ

X
I

lI;a

�
Ra
lm; l ≥ 0;

Slm ¼ 1

4

XN
a¼1

�
ma −

X
I

kIa

�
Ra
lm; l ≥ 1; ð11Þ

with M00 ¼ M and

Ra
lm ¼ jxajl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
Y�
lmðθa;ϕaÞ: ð12Þ

As in the case of axisymmetric geometries, we define
dimensionless moments

M̄lm ¼ Mlm

Mlþ1
; S̄lm ¼ Slm

Mlþ1
: ð13Þ

We center the coordinate system in the center of mass and
orient the z axis along the angular momentum, so that

1

4

XN
a¼1

�
va þ

X
I

lI;a

�
xa ¼ 0;

1

4

XN
a¼1

�
ma −

X
I

kIa

�
xa ¼ J ez; ð14Þ

with ez the unit vector along z. With this choiceM1m ¼ 0,
S1;�1 ¼ 0, and S10 ¼ J .

Equations (11) are one of our main results, as they allow
us to compute the multipole moments of any multicenter
microstate geometry. In fact, our method can be straight-
forwardly applied to any metric in ACMC form. In the
following, we will focus on some specific cases.
Examples.—The simplest horizonless geometries arise

from three-center solutions. We consider fuzzballs that
asymptote to BHs carrying three electric (QI) and one
magnetic (P0) charge, obtained from orthogonal branes, so
we require that KI and M vanish at order 1=r. Up to a
reordering of the centers, the general solution can bewritten
in the form [45]

V ¼ 1þ
X3
a¼1

1

ra
; M ¼ κ1κ2κ3κ4

�
1

r1
−

1

r2

�
;

L1 ¼ 1þ κ4

�
κ3
r1

−
κ2
r2

�
; L2 ¼ 1þ κ1κ4

�
κ3
r2

−
κ2
r1

�
;

L3 ¼ 1þ κ1

�
κ2κ3
r1

þ κ2κ3
r2

þ ðκ2 þ κ3Þ2
r3

�
;

K1 ¼ κ1

�
−
κ2
r1

−
κ3
r2

þ κ2 þ κ3
r3

�
;

K2 ¼
κ3
r1

þ κ2
r2

−
κ2 þ κ3

r3
; K3 ¼ κ4

�
1

r2
−

1

r1

�
; ð15Þ

with κα some arbitrary integers.
Regular solutions describe microstates of a (nonrotating)

BPS BH with mass

M ¼ 1

4
ðQ1 þQ2 þQ3 þ P0Þ ð16Þ

and charges

Q1 ¼ κ4ðκ3 − κ2Þ; Q2 ¼ κ1κ4ðκ3 − κ2Þ;
Q3 ¼ κ1ðκ22 þ 4κ2κ3 þ κ23Þ; P0 ¼ 3: ð17Þ

Besides the integer parameters κα, the solution depends
on some continuous parameters, namely, the distances
between the centers rab ¼ jxa − xbj. These are constrained
by the so-called “bubble equations” [53], ensuring regu-
larity of the five-dimensional lift and absence of closed
timelike curves. In the three-center case, one has

r12¼
2κ1κ4ðκ2−κ3Þ2r23

κ1κ4ð2κ22þ5κ2κ3þ2κ23Þþ½κ2þκ4−κ1κ3ð1−κ2κ4Þ�r23
;

r13¼
κ1κ4ð2κ2þκ3Þðκ2þ2κ3Þr23

κ1κ4ð2κ22þ5κ2κ3þ2κ23Þ−ðκ1−1Þðκ2þκ3Þr23
; ð18Þ

which allow one to express r12 and r13 in terms of r23 ¼ L,
the surviving continuous parameter (“modulus”) labeling
the microstate. Asymptotically the solution coincides with
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the Kerr-Newman metric [56], whose multipolar structure
is the same [57] as in the Kerr case [see Eq. (1)].
A summary of the first multipole moments for some

representative cases is shown in Table I. The general
expressions for the multipole moments are cumbersome,
so we present them in the limit of large mass (κα ≫ 1),
which is also the most interesting one from a phenomeno-
logical point of view, since it corresponds to objects with
mass arbitrarily larger than the Planck mass. We consider
three representative arrangements of the three centers:
Case (A) Equilateral triangle. ðκ1; κ2; κ3; κ4Þ ¼

ð1; 0; k; kÞ. These microstate geometries fall into the class
of “scaling solutions” characterized by zero angular
momentum, J ¼ 0, equal charges Q⃗ ¼ ðk2; k2; k2Þ, and
mass M ¼ 3

4
ð1þ k2Þ. Thanks to Z3 symmetry around z,

the nontrivial mass multipole moments read

M2pþ3n;3n ¼ Mð−LÞ2pþ3n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2pþ 6nÞ!ð2pÞ!p
22pþ3nðpþ 3nÞ!n! ; ð19Þ

where L ¼ r12 ¼ r23 ¼ r31. Thus, at variance with the
Kerr case, the mass quadrupole moments are not spin
induced; they can be nonzero even if the spin J vanishes.
Furthermore, for l ≥ 3 they also have m ≠ 0 components
of the mass moments. The large k limit of all quadrupole
moments are displayed in Table I.
Case (B) Isosceles triangle. ðκ1; κ2; κ3; κ4Þ ¼ ð1; 0; 1; kÞ.

These microstate geometries possess nonvanishing angular
momentum, J ¼ fðk − 1ÞkL=2½kðLþ 2Þ − L�g, charges
Q⃗ ¼ ðk; k; 1Þ, and mass M ¼ ½ð2þ kÞ=2�. In this case
L ¼ r23 ¼ r31 > r12. For k → ∞ and L ≪ 1 (see Table I),
the multiple moments coincide with those of the Kerr
metric modulo the factors ð−1Þn in Eq. (2). In particular,
while the Kerr metric is oblate (M2 < 0), these solutions
are prolate (M2 > 0). However, for finite values of k, the
solution also displays quadrupole moments that break axial
symmetry, e.g., M22 and S21.
Case (C) Scalene triangle. ðκ1; κ2; κ3; κ4Þ ¼ ð3; 0; k; 2kÞ.

These microstate geometries possess a nonvanishing angu-
lar momentum J , which is a complicated function of k and
L, with L ¼ r23 < r12 < r31, charges Q⃗ ¼ ð2k2; 6k2; 3k2Þ,
and mass M ¼ ½ð3þ 11k2Þ=4�. For large k, one finds J ∼
½ð ffiffiffi

3
p

kLÞ=4�. Triangle inequalities require ν≡ ðL=12k2Þ <
1 − ð1= ffiffiffi

2
p Þ. The multipole moments for large k are

displayed in Table I. In this case, both the axisymmetry
and the equatorial symmetry of the Kerr metric are broken,
as shown by the fact that the multipole momentsMlm and
Slm are generically nonzero.
It is interesting to observe that the mass and current

multipole moments of these microstate geometries are
typically larger than those of a Kerr-Newman BH with
same mass and angular momentum. A representative
example of this property is shown in Fig. 1, where we
display some ratios between multipole moments of micro-
state geometries of type C and those of a Kerr BH. We
focus on the quadratic invariants

trM2
l ¼

Xl
m¼−l

jMlmj2; trS2l ¼
Xl
m¼−l

jSlmj2: ð20Þ

We have explored numerically a large region of the whole
ðκα; LÞ parameter space and found that quadratic invariants
for the microstate geometries are typically bigger than those
of Kerr BHs for any l [50]. It would be interesting to find a
general proof of this property, which is analogous to the
fact that the Lyapunov exponent of unstable null geodesics

TABLE I. The first dimensionless multipole moments of some representative three-center microstate geometries in the k2 ≫ L.
Moments with m < 0 follow from M̄l;−m ¼ ð−1ÞmM̄�

l;m.

Solution ðκ1; κ2; κ3; κ4Þ S̄10 M̄20 M̄21 M̄22 S̄20 S̄21 S̄22

A ð1; 0; k; kÞ 0 8=27k4 0 0 0 0 0
B ð1; 0; 1; kÞ L=k L2=k2 0 3

ffiffiffi
3

p
L2=2

ffiffiffi
2

p
k3 0 −3L2=

ffiffiffi
2

p
k3 0

C ð3; 0; k; 2kÞ 4
ffiffiffi
3

p
L=112k3 144L2=114k4 72

ffiffiffi
2

p
L2=114k4 72

ffiffiffi
6

p
L2=114k4 −164L2=114k5 −48

ffiffiffi
2

p
L2=114k3 2

ffiffiffi
6

p
L2=113k3

Kerr-Newman χ −χ2 0 0 0 0 0

0.00 0.05 0.10 0.15 0.20 0.25
0

5

10

15

20

25

FIG. 1. Ratios between the quadratic invariants for the first
multipole moments of a fuzzball (solution C) and a Kerr BH with
the same angular momentum, as a function of ν ¼ L=ð12k2Þ with
k ¼ 1. The vertical solid line corresponds to the upper bound
νmax ¼ 1 − 1=

ffiffiffi
2

p
. The horizontal dotted black line refers to the

fuzzball and Kerr moments being identical. The fuzzball mo-
ments are larger than the corresponding Kerr ones, which is a
typical property [50].
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near the photon sphere is maximum for the BH solution
[40]. In other words, both for the multipole moments and
for the Lyapunov exponent, the BH solution appears to be
an extremum point in the space of the solutions.
Phenomenological implications.—The above examples

are representatives of some general features of this
large family of solutions. In particular, the l ≥ 2 multipole
moments of fuzzball geometries are not necessarily spin
induced as in the Kerr case, they can break axial and
equatorial symmetries and are larger than in the Kerr case.
The peculiar multipolar structure and the striking deviation
from the Kerr multipoles provides a portal to constrain
fuzzball models with current and future observations, with
both electromagnetic and GW probes [16].
By analyzing the accretion flow near the supermassive

BH in M87, the Event Horizon Telescope placed a mild
bound on its dimensionless (axisymmetric) quadrupole
moment, jM̄2 − M̄BH

2 j≲ 4 [58]. Furthermore, in a coa-
lescence the quadrupole moment of the binary components
affect the GW signal through a next-to-next-to-leading
post-Newtonian correction [59,60]. Constraints on para-
metrized post-Newtonian deviations using the events from
the first LIGO-Virgo Catalog [61,62] can be mapped into a
constraint jM̄2 − M̄BH

2 j≲ 1, in particular, using the events
GW151226 and GW170608 [63]. Comparing with devia-
tions found in the microstate solutions, current bounds are
not particularly stringent.
While current GW constraints will become slightly more

stringent in the next years as the sensitivity of the ground-
based detectors improve [64], much tighter bounds will
come from extreme mass-ratio inspirals (EMRIs), one of
the main targets of the future space mission LISA [65].
Although EMRI data analysis is challenging [66–69], the
potential reward is unique: a detection of these systems can
be used to measure the (m ¼ 0, mass) quadrupole moment
M̄2 of the central supermassive object with an accuracy of
one part in 104 [66,70], offering unprecedented tests of
exotic compact objects [9,71,72].
While our results suggest that very strong constraints on

fuzzball geometries can be set with EMRIs, a precise
analysis requires a class of neutral, nonextremal solutions,
which would further imply the absence of extra emission
channels (e.g., dipolar radiation). For astrophysically viable
objects, we expect that the multipolar structure is the only
discriminant with respect to the Kerr BH case, which can be
explored with the methods presented here.
In addition to having a different quadrupole moment,

microstate geometries are much less symmetric than the
Kerr metric, which implies the existence of multipole
moments that are identically zero in the Kerr case (see
also Refs. [9,73]). Investigating how multipole moments
that break equatorial symmetry or axisymmetry (e.g., S2m
and M2m with m ≠ 0) affect the GW waveform and their
phenomenological consequences is an important topic that
is left for a follow-up work.

Finally, a broad statistical analysis shows that certain
invariant combinations of the l ≥ 2 multipole moments of
three-center microstate geometries are larger than those of
the corresponding Kerr BH in a wide region of the four-
dimensional parameter space and are always larger than
their corresponding value in the L → 0 limit [50]. If
confirmed, this result would imply that any future meas-
urement of the invariant combinations of the multipole
moments smaller than the BH ones can potentially rule out
this family of solutions to be typical microstates of the
corresponding BH, with important consequences for the
fuzzball scenario.

D. C. was supported by FWF Austrian Science Fund
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NEXT, CUP: B84I20000100001), and support from the
Amaldi Research Center funded by the MIUR program
“Dipartimento di Eccellenza” (CUP: B81I18001170001).

Note added.—Recently, a related work by Iosif Bena and
Daniel R. Mayerson appeared [74] (see also the more recent
companion [75]). The idea and aims of that paper are
similar to ours. Reference [74] focuses on axisymmetric
geometries in the BH limit, whereas our results are valid
beyond axial symmetry in regions where the microstate
geometries can significantly deviate from the BH metric.
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